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PREFACE

It is well known that only a small fraction of extant microbial life has 
been identified. Metagenomics, the direct sequencing and characteriza-
tion of genes and genomes present in complex microbial ecosystems 
(e.g., metagenomes), has revolutionized the practice of microbiology 
by bypassing the hurdle of pure culture isolation. Metagenomics shows 
promise of advancing our understanding of the diversity, function, and 
evolution of the uncultivated majority.

Metagenomics as a field arose in the 1990s after the application of 
molecular biology techniques to genomic material directly extracted 
from microbial assemblages present in diverse habitats, including the hu-
man body. The application of metagenomic approaches allows for the 
acquisition of genetic/genomic information from the viruses, bacteria, 
archaea, fungi, and protists forming complex assemblages. The field of 
metagenomics addresses the fundamental questions of which microbes 
are present and what their genes are potentially doing.

In the mid-2000s, the availability of high-throughput or next- 
generation sequencing technologies propelled the field by lowering the 
monetary and time constraints imposed by traditional DNA sequencing 
technologies. These advances have allowed the scientific community to 
examine the microbiome of diverse environments/habitats, follow  spatial 
and temporal changes in community structure, and study the response 
of the communities to treatment or environmental modifications.

In 2012, the publication of the large-scale characterization of the mi-
crobiome of healthy adults created high expectations about the influence 
of the microbiota in human health and disease. With the publication 
of the results of the Human Microbiome Project, metagenomics has 
emerged as a major research area in microbiology, particularly, when 
it comes to the characterization of the role of microbiota in complex 
disorders, such as obesity.

With contributions by leading researchers in the field, we provide a 
series of chapters describing best practices for the collection and  analysis 
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of metagenomic data, as well as the promises and challenges of the field. 
The chapters have been dedicated to different aspects of metagenomics. 
Chapter 1 provides an end-to-end overview of the metagenomic pipe-
line and its challenges. Chapter 2 showcases SMRT, one of the third- 
generation sequencing platforms, and its use in metagenomics. As high 
abundance of ribosomal RNA (rRNA) transcripts is a major hurtle for 
the application of transcriptomics to microbial communities,  Chapter 3 
describes methodology that can reduce the “noise” rRNA imposes on 
this type of studies. Chapters  4 and  5 showcase some of the compu-
tational approaches that are used to analyze the whole-community 
metagenome sequence data and available software, and highlight future 
research directions. The statistical challenges and solutions for cross-
sectional and longitudinal data sets are explored in Chapters 6 and 7, 
respectively. Chapter  8 presents a historical perspective of the micro-
biome studies, the societal impact of microbial communities, and the 
 challenges ahead for metagenomics, while advances in virome studies 
are explored in Chapter  9. A perspective on the current efforts, chal-
lenges, and the future of metagenomic is presented in Chapter 10.

This book is intended for researchers, teachers, students, and the 
 citizen scientists contemplating performing microbial metagenomics 
studies. For microbiologists generating metagenomic next-generation 
 sequencing data, the book will provide an introduction and support to the  
computational and statistical specifics of the data. For the statisticians 
and computational scientist contemplating working with metagenomic 
data, it will provide some of the initial background needed. For the com-
munity, in general, it will provide the basis for further investigation of 
this transformative and fascinating field.

We would like to thank all authors for their contributions. We need to 
acknowledge the public and private funding entities that made this tech-
nological and conceptual advance a possibility, as well as the researchers 
and consortia that broke the grounds for those innovations to flourish. 
Last, we would like to thank Elsevier for the short book format and al-
lowing a more focused and didactic approach.

Jacques Izard
Maria C. Rivera
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1
Steps in Metagenomics: Let’s Avoid 
Garbage in and Garbage Out

Jacques Izard

 WHY METAGENOMICS?

Is metagenomics a revolution or a new fad? Metagenomics is tightly 
associated with the availability of next-generation sequencing in all its 
implementations. The key feature of these new technologies, moving 
beyond the Sanger-based DNA sequencing approach, is the depth of 
nucleotide sequencing per sample.1 Knowing much more about a sample 
changes the traditional paradigms of “What is the most abundant?” or 
“What is the most significant?” to “What is present and potentially sig-
nificant that might influence the situation and outcome?”

Let’s take the case of identifying proper biomarkers of disease state in 
the context of chronic disease prevention. Prevention has been deemed 
as a viable option to avert human chronic diseases and to curb health-
care management costs.2 The actual implementation of any effective 
preventive measures has proven to be rather difficult. In addition to the 
typically poor compliance of the general public, the vagueness of the 
successful validation of habit modification on the long-term risk, points 
to the need of defining new biomarkers of disease state.

Scientists and the public are accepting the fact that humans are super-
organisms, harboring both a human genome and a microbial genome, 
the latter being much bigger in size and diversity, and key for the health 
of individuals.3,4 It is time to investigate the intricate relationship between 
humans and their associated microbiota and how this relationship mod-
ulates or affects both partners.5 These remarks can be expanded to the 
animal and plant kingdoms, and holistically to the Earth’s biome. By its 
nature, the evolution and function of all the Earth’s biomes are influenced 
by a myriad of interactions between and among microbes (planktonic, in 
biofilms or host associated) and the surrounding physical environment.
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The general definition of metagenomics is the cultivation-indepen-
dent analysis of the genetic information of the collective genomes of the 
microbes within a given environment based on its sampling. It focuses 
on the collection of genetic information through sequencing that can 
target DNA, RNA, or both. The subsequent analyses can be solely fo-
cused on sequence conservation, phylogenetic, phylogenomic, function, 
or genetic diversity representation including yet-to-be annotated genes. 
The diversity of hypotheses, questions, and goals to be accomplished is 
endless. The primary design is based on the nature of the material to be 
analyzed and its primary function (Figure 1.1).

 IT ALL STARTS WITH THE STUDY DESIGN

The goal is not to tell you how to do your science but to emphasize some 
aspects of study design that need careful attention because of the char-
acteristics of the methodologies used in metagenomic studies. It begins 
by identifying the primary objective of the metagenomics project. What 
is the main scientific question you are trying to answer? More than one 
hypothesis can be tested depending on the scope of the experiment and 

Fig. 1.1. Metagenomic analysis process and some of the overarching questions that can be answered by the different 
methodologies.
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the amount of associated data, or metadata, that you collect and use for 
your subsequent analyses.

The high-dimensionality characteristic of the metagenomics data-
sets is challenging and is revolutionizing microbiology analytical meth-
odology. What is meant by high-dimensional dataset? Let’s take as an 
example the Human Microbiome Project (HMP) 16S ribosomal RNA 
(rRNA)-based characterization of 10 sites from the digestive tract of 
200 individuals. Such analysis required the collection of over 2000 
samples, generating approximately 23 million high-quality sequence 
reads that were assigned to 674 taxonomic clades with their respec-
tive relative abundance per taxonomic level (e.g., from phylum to ge-
nus). For example, for the genus Pyramidobacter, the database stores 
the relative abundance at each taxonomic level, from the phylum (e.g., 
“Bacteria|Synergistetes”), the most inclusive taxonomic level, to the ge-
nus (e.g., “Bacteria|Synergistetes|Synergistia|Synergistales|Synergista-
ceae|Pyramidobacter”), the least inclusive taxonomic level, and all the tax-
onomic levels between the two.6 From the same study, four body sites were  
further analyzed using whole metagenome shotgun (WMS) sequencing 
from approximately 100 individuals, generating a trillion nucleotides.6 
Another example can be extracted from the work of Giannoukos et al.7 
while developing rRNA depletion methodology for fecal samples. They 
obtained over 100,000 reads per sample.7 In each example, each sample 
has a tremendous amount of genotypic and phenotypic information in 
addition to the metadata (e.g., age, sex, race, and others). In addition to 
the nucleotide data, information about other molecules (e.g., lipids, pro-
teins, and metabolites) can be collected; increasing the complexity and 
multidimensionality of the dataset. The type of data collected will de-
termine the type of analyses performed. These analyses can help answer 
questions such as: “What are the organisms present?”, “What can these 
organisms potentially do?”,’ “What is their metabolic capability?”, and 
“How do they influence the host?” (Figure 1.1). Planning the structure 
of samples and metadata acquisition as well as the analysis pipeline to 
be used, prior to the start of the experiment, will avoid bottlenecks and 
optimize utilization of funds.

During the study design phase, investigators need to take into 
consideration the ethical and legal issues related to metagenomics data 
collection and analysis. Some of the constrains of metagenomics studies 



4 Metagenomics for Microbiology

utilizing human subjects include Institutional Review Boards, informed 
consent, and other issues related to the protection of the identifiable 
health information of the human subjects (e.g., HIPAA Privacy Rule in 
the United States). For examples of consent documentation and standard 
operating procedures, the National Institutes of Health HMP has made 
those document public and available online (http://www.hmpdacc.org).8 
It is essential for the consent procedures to accurately state what data 
will be gathered, how it will be used, and how it will be stored. All efforts 
should be made to secure information and confidentiality of the genetic 
material and associated data over time. This includes both the physical 
storage of the information, data deposition and data sharing, even when 
the samples are de-identified. For environmental samples, having the 
right of access and sampling permits is critical as geolocation is now 
required with the sample data submission to repository.

It is important to point out that any samples collected from a host 
will contain a significant amount of the host genetic material. The po-
tential contamination of samples with the host genetic material adds 
to the complexity of the metagenomics studies, and sophisticated com-
putational pipelines for the removal of the contaminating reads are es-
sential to generate meaningful conclusions and, in the case of human 
subjects, to protect the privacy and confidentiality of the sample donor. 
Figure 1.2 shows the impact of human “contamination” on the amount 
and quality of the data collected using shotgun sequencing of human 
samples from 16 different body sites.8 When working with different mod-
els, it should be noted that the genome of a brown rat is not that much 
smaller than that of a human (over 3 billion base pairs), and that the 
corn genome is over 2 billion base pairs. Although protists and fungi 
are much smaller, their genomes are still composed of few million base 
pairs. The knowledge of your biological system of interest will be criti-
cal to optimize the study design.

 HAVE A STATISTICAL ANALYSIS PLAN  
IN PLACE BEFORE STARTING

Planning for statistical analysis should be an integral part of the study 
design. Although many experimental designs can be performed in 
metagenomics project, there is no single path to a successful strategy. 
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While using metagenomic or metatranscriptomic approaches, it is es-
sential to refer to the specific needs of each experiment.

The statistical analysis plan should take into account the characteris-
tics of the experiment (in human studies, this would be the inclusion and 
exclusions criteria), the rate of sample acquisition (this would include 
the rate of human subject recruitment that will determine if  you are 

Fig. 1.2. Impact of quality and human filtering on shotgun metagenomic dataset. Thorough quality filtering and 
removal of reads resulting from human DNA contamination was performed on all shotgun metagenomic data of 
the Human Microbiome Project (average of 13 Gb/sample). The variation in fraction of reads per sample removed 
across the 18 body sites is shown by (A) boxplots for % of human and of (B) quality filtered reads. (C) Total 
amount of usable data (white) per site significantly varied because of (i) the different number of samples per site, 
(ii) the differential impact of human contamination (dark gray), and (iii) the differential impact of quality filtering 
(light gray). (D) Summary view of the usable fractions versus human and quality filtered data, per body site. 
(Reprinted by permission from Macmillan Publishers Ltd.8)
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working with one or more batch of datasets), the descriptive objectives, 
testable hypotheses, the statistical methods that might be stand alone 
or imbedded in bioinformatics tools or pipelines, etc. One of the direct 
advantages of planning ahead is that when you have the data in hand, 
you’ll have a strategy in place to start the analysis. This is critical as next-
generation sequencing provides a tremendous amount of data and you 
want to remain focused on your primary objective(s). After the accom-
plishment of your primary objective(s), exploratory analyses and ad-
ditional hypotheses investigation or formulation is always a possibility.

The most basic question about the research plan should be “Are 
enough samples being collected from each site or from enough subjects 
to make meaningful conclusions?” To properly assess the degree of simi-
larity or dissimilarity between bacterial communities, a measurable dif-
ference, or effect size, is necessary. In general, the smaller the effect size 
and the greater the variability within a group of samples, the larger the 
number of samples is required to achieve adequate statistical power.

For determining sample size for experiments using metagenomic 
taxonomic data, the work derived from the HMP provided the 
first available calculation and software package9 (see chapter 6 by 
La Rosa and colleagues). For metagenomics and metatranscriptomics, 
standardized methods to assess the number of subjects (or independent 
samples) and reads are yet to be developed. If  you are planning to use 
both a 16S rRNA gene-targeted approach and whole-metagenome 
shotgun sequencing, a two-stage experimental design is an option to 
focus on a subset of samples.10

The complexity of your sample will greatly influence the depth of se-
quence coverage in WMS and metatranscriptomics sequencing projects. 
As mentioned above, host genomic information can represent a significant 
amount of genetic data obtained through next-generation sequencing 
approaches, and this information should be part of an optimized study 
design.

If  the complexity of the sample is low (as determined by more tradi-
tional methods), you may be able to estimate the depth of sequencing 
coverage needed, in order to sample the whole metagenome. Although 
each next-generation sequencing platform has its unique biases and as-
sociated errors (an issue not restricted to next-generation sequencing), 
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metagenomic analyses assume that the reads are sampled randomly, in-
dependently, and evenly distributed across all the genomes in the metage-
nome.11,12 To calculate the coverage, you need to know the amount of 
material (nucleotide amount) you are using and the size of the genomes 
or an average size for that environment. Figure 1.3 provides an overview 
of expected genome size in prokaryotes that can be complemented by 
other resources providing the exact information on specific genomes.13–16 
The correlation between G+C content and chromosome size can be pos-
itive, negative, or not significant depending on the clade from kingdom 
to species.15 To our advantage, most chromosomes within a species have 
a similar pattern of correlation between G+C content and chromosome 
size; however, outliers are common.15

Longitudinal studies present their own challenges and can be indepen-
dently analyzed at each time point, along the timeline as well as across 
body sites17,18 (see chapter 7 in this book). When feasible, the collection of 
the metadata in between the time points is also critical in understanding 
the dynamic signatures of microbial population modification.

Pooling the samples might seem to be a good strategy to reduce cost 
and reduce sample variation. However, this approach loses all of the 
low genetic representation and the ability to make inferences about the 
microbial population.

Fig. 1.3. Distribution of genome size based on temperature and habitat. (A) Distribution of genome sizes 
among prokaryotes with different growth temperature ranges. The differences in genome size between mesophiles, 
thermophiles, and hyperthermophiles are significant (Wilcoxon rank-sum test, P < 1.9 × 10−5 and P < 7.9 × 10−3 
for mesophiles–thermophiles and thermophiles–hyperthermophiles, respectively), but not between psychrophiles 
and mesophiles (Wilcoxon rank-sum test, P = 0.082). (B) Distribution of genome sizes among different habitats. 
Habitats are ordered according to environmental variability from unvarying (host associated) to the most 
variable environment (terrestrial). The distributions of genome sizes differ between habitats (Wilcoxon rank-
sum test, P < 0.018, P < 0.0005, P < 0.0028, for specialized-aquatic, aquatic-multiple, and multiple-terrestrial, 
respectively), with the exception of host-associated habitats (Wilcoxon rank-sum test, P = 0.67, for comparison 
between host-associated and specialized). The red vertical marks are the medians, the edges of the box are the 25th  
and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers (99% of all data 
if the data are normally distributed), and outliers are individually plotted as red crosses. Reprinted by permission 
from Oxford University Press.16
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You might not find a metagenomic dataset to help or guide you in the 
experimental design phase. Instead, previous results using other molecu-
lar techniques or culture-based methods might be an alternative source 
of help in the design. If  you were looking at the same question with a 
more traditional method, you should have enough samples to detect dif-
ferences if  they are present.

 METADATA IS NEEDED TO PROVIDE  
CONTEXT TO THE ANALYSIS

Critical to any metagenomic study is the quality and extent of the con-
textual metadata. Metadata is what will enhance your analysis beyond 
the most obvious evidence. It provides context to the experiments and al-
lows for meaningful comparisons between studies, while deepening our 
understanding of the dataset. With a greater depth of information, a 
broader knowledge of the “environmental factors” is needed. Although 
not the focus of an experiment, seemingly extraneous data may become 
important. For example, information on the source of carbon for mi-
crobial metabolism might be later identified as a confounding variable 
in an experiment. It can be as simple as the source of sugar intake for a 
subject or the nature of the pollutant for a soil sample.

The information about the sample location or its relative position 
to other samples can be included in the analyses. The concept of bio-
geography goes beyond the description of environmental features that 
influence the spatial distribution of the microorganisms. It aims to un-
derstand the metabolic processes within the microbes’ own niche and 
their relationships with other biological niches. The niche might be the 
different sites in the oral cavity, along the digestive tube, or in the skin.19–

21 Large-scale data visualization and analysis tools have been created to 
help us better understand these positional aspects22.

As we are discovering the microbiome as an interdependent organ 
of any biological system,5 we may need to redefine what are the best as-
sociated data to collect along with the genomic sample. Although blood 
analyses might reflect the systemic inflammation of a human subject, the 
levels of air particles less than 2.5 mm in diameter (PM2.5) that the sub-
ject is exposed to might contribute to the severity of their asthma, modi-
fying the microbiome, which, in turn, can modify the responsiveness to 
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medication.23,24 In longitudinal datasets, seasons and length of the day 
have been shown to influence the ocean microbiome.25

Defining or re-defining the phenotype of interest might have a crucial 
importance. Because the phenotype is the results of the interaction be-
tween the genotype and the organism’s environment in all its complexity, 
including the microbiome, we are required to renew our attention to the 
granularity of the defined phenotype. From the macro to the molecular 
scale, new considerations that were previously neglected because of the 
lack of significance might be at play when scrutinized with a different 
sliver or window of observation. Guidelines for data organization and 
naming standardization are already in place and are being improved 
upon, as described below.

 SAMPLING: THE BASIS OF GOOD RESULTS

Although the technology of the sequencing platforms has evolved, they 
all focus on sequencing the nucleic acids, either DNA or RNA. The 
source of the microbiome sample greatly varies, from the environment, 
plants, insects, and animals to humans. The published data on environ-
mental samples have been as diverse as soil, hot springs, seawater, air, as 
well as home and hospital surfaces. For plants, the associated microbi-
ome above and below the ground has been studied. In insects, animals, 
and humans, multiple body sites have been investigated. In many of the 
subsequent steps, the hypothesis involved, the goals of the project, the 
available facilities and personnel, and the available funds play a role in 
the decision matrix.

Contamination will be detected as an integral component of the 
sample because of the depth of the data being acquired. Only a few 
years ago, understanding microbial diversity often led the investigator 
to do a series of cloning experiments resulting in the identification of 
approximately 100 randomly selected organisms per sample. Later, the 
availability of microarrays allowed the identification of few hundreds 
of organisms per sample. More recently, by using targeted 16S rRNA 
gene next-generation sequencing, tens of thousands of organisms can 
be identified per sample.1,26 It is recommended to examine each step in 
the context of potential inadvertent contamination by nucleic material 
or potential inhibitor for downstream applications. This is particularly 
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applicable to tools that are reused, where proper cleaning and steriliza-
tion procedures are essential. The following guidelines are simple ways 
to increase the quality of sample preparation. Not talking over a bio-
logical sample or wearing a facemask would eliminate contamination 
by the breath. While protecting the sample using gloves, we should not 
forget that a simple touch of the skin or a surface would contaminate the  
glove that, in turn, might contaminate the sample itself. Natural  DNAses 
and RNAses may potentially damage the sample. It is most often about 
applying common sense in the context of the depth of the data to be 
gathered. In other words, if  you want to know the microbiome of the 
banana peel on the plant but you drop the banana in the field, you are 
going to also learn about the microbiome of that square of earth as well 
as that of the fruit.

The proper sampling protocol is essential to a successful metagenom-
ics study, since the accurate identification of many organisms depends 
on the collection and handling of the sample. Defining the geographical 
location or the specific body site, surface, depth volume, or quantity to 
be collected are necessary for sampling standardization. When possible, 
keep the samples concentrated and process them for immediate storage. 
Consistency in all aspects will both preserve the quality of the sample 
and limit the batch effect during the analysis, enhancing the signal of 
interest. Protecting the samples against the element (wind, sun, etc.) 
sounds to be a good advice, but keep in mind that sample desiccation is 
a common problem when working with small samples.

Analyzing true and technical replicates of a sample and assessing 
whether observed differences are statistically significant are a good prac-
tice. True replicates, when the same site is sampled more than once, are 
rarely done in metagenomics study as the sensitivity of the technique 
may easily show differences when sampling a site multiple times because 
of the biological organization of the site.27 Technical replicates, when 
the sample is split for processing, are easy to perform for reassurance.28,29

 SAMPLE STORAGE

Storage and sampling are tightly linked issues. It is not always possible 
to have a freezer or an expert on location when the sample is collected. 
Solutions for these problems affecting the downstream steps need to be 
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identified before starting the study. The nature of the type of sample is 
too diverse to enter in all the details, but one key question will drive the 
process: “How much sample do I really need?” The associated questions 
would be: “Do I need DNA, RNA, proteins, lipids, small molecules, etc., 
from the same sample?”, “Will the sample be used for more than one 
application, preparation, or extraction?”, as well as any other questions 
related to the present or the future study applications that might be of 
interest later on.

Many options are available, from immediate extraction to long-term 
storage in liquid nitrogen. The nature of the sample often dictates what 
is the best protocol to avoid sample desiccation, denaturation, lysis, deg-
radation, etc. As immediate extraction on site or access to an −80°C 
freezer is not always an option, alternatives must be developed to pre-
serve the sample, its integrity, and its value for the question(s) at hand. 
Similarly, for a vaccine, the quality of storage and its consistency might 
influence the sample quality. Multiple companies are offering sampling 
kits with fixative but those are rarely validated by comparative analysis. 
A metagenomic and metatranscriptomic comparison of human stools 
flash frozen, preserved in ethanol, or in RNA later show that those fixa-
tives are compatible with large-scale self-collection by human subjects in 
a geographically disseminated cohort.30

Sampling cost is often neglected. You might have multiple steps in 
your process to reach the final storage space, and there is no issue with 
that. Optimize your process to be the most consistent for each sample 
or per batch of samples. It should be stressed that whether you work 
on a large human subject cohort or a large field collection, the cost of 
personnel, sampling equipment (single use when possible), and transient 
as well as permanent storage adds up quickly. With the sample collected 
and in storage, nucleotide extraction will be the next step.

 SAMPLE EXTRACTION

The sample input into a metagenomics pipeline can be extremely diverse. 
The DNA and/or the RNA need to be extracted from the sample prior 
to any analysis. The type and source of the sample determines the most 
appropriate extraction protocol. This step, simplified by the availability 
of nucleic acid extraction kits, is crucial to the success of the analysis, 
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as the quality of extracted DNA and/or RNA influences all subsequent 
steps. Before selecting the most appropriate extraction protocol, a care-
ful review of the literature and validation of the protocol for your specif-
ic sample is recommended. The choice of protocol depends on the DNA 
or the RNA yield, shearing, removal of contaminants (which could be 
inhibitory to subsequent steps), and representation of diversity. A com-
piled list of extraction protocols for different sample sources has been 
recently published.31 Some other criteria have to be taken in consider-
ation as described below.

As mentioned above, the source of the sample is very important in 
the selection of the extraction protocol. A classic example of this is dem-
onstrated by the inhibitory effect of humic acids in enzymatic reactions, 
such as polymerase chain reaction (PCR), performed using nucleic ac-
ids extracted from manure or soil.32,33 Thus, elimination of humic acids 
needs to be part of the process, which might be already optimized by a 
compatible specific kit.

How the sample was preserved also matters. An example is the DNA 
recovery from formalin-fixed paraffin-embedded tissue, as the tissue is 
not readily available to traditional protocols.34,35

Differences in the structures of bacterial cell walls cause bacterial cell 
lysis to be more or less efficient.36,37 The differential efficiency of the lysis 
can distort the apparent composition of the microbial communities and 
introduce bias in estimates of relative abundance.36–39

Consistency in sample handling and processing is key to avoid batch 
effect. Training, standard operating procedure, and good quality controls 
greatly help in minimizing the possibility of batch effect. Nucleic acids 
extraction automation is a good alternative when sufficient samples are 
available and the method of extraction has been validated.40

Extracting more than one macromolecule at the time is an option. 
Kits and protocols allow the purification of both DNA and RNA from 
the same sample, while others go further by recovering proteins as well.31 
An ongoing challenge is to purify other macromolecules from the same 
sample, which might require a different set of strategies.

Removing the host DNA might improve the quality of your analysis 
and decrease the cost of the sequencing by requiring magnitude(s) less 
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of reads for the same amount of information. Differential lysis of eu-
karyotic cells (personal communication, Dr Eva Haenssler) and separa-
tion of methylated DNA based on CpG site methylation density between 
the host and the microbes41 are the two strategies used by commercial 
kits. The attempt to decrease host DNA is not only limited to verte-
brate hosts but successful contaminant DNA removal have also been 
performed in plants.42,43

 CHOOSING THE RIGHT PLATFORM

The cost of sequencing has drastically decreased (Figure 1.4), opening 
the door to many new investigations that were previously too costly. Al-
though the cost per base of sequencing has decreased, the total cost of a 
run is still significant because the number of megabases sequenced per run 
is steadily increasing (Table 1.1). The initial entry cost might be still too 
high for some pilot projects. Based on those same parameters, traditional 

Fig. 1.4. Reduction of the cost of DNA sequencing over time. The white line reflects the Moore’s Law pace. The Y axis 
shows, in logarithmic scale, the cost of sequencing per raw megabase of raw unassembled DNA sequence. The out-pacing 
of Moore’s Law pace matches the availability of the first next-generation sequencing platforms, in 2008, competing with 
Sanger-based DNA sequencing technology. (Courtesy of the National Human Genome Research Institute.45)
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techniques such as PCR-DGGE (PCR followed by a denaturing gradient 
gel electrophoresis), cloning experiments followed by Sanger-based DNA 
sequencing, and microarrays approaches are here to stay.44,45

Which sequencing platform to use? Because of the varied nature of 
scientific studies, there is no single approach that is recommended. De-
tailed review of the literature, discussions with colleagues and sequencing 

Table 1.1 Sequencing Platforms and Characteristics Based on Online Manufacturer 
Technical Specifications.

Sequencer
Read 
Length (b)a

Run Time 
(h) (d)b Reads Per Run Yield (b)a

Mate Pair 
Information

Use in 
Metagenomics

ABI 3730xlc 500–900 6–10 h – 0.05–0.08 Mb Yes Not anymore

Roche 454
GS Juniord

∼400 10 h ∼100,000 35 Mb No Yes

Roche 454
GS FLX+d

∼700 23 h 1 million 700 Mb No Yes

Illumina 
MiSeqd

∼300 5–65 h 25 million 0.3–15 Gb Yes Yes

Illumina 
NextSeq 500

∼300 12-30 h 130–400  
million

20–120 Gb Yes Yes

Illumina 
HiSeq 2500d

∼125–150 7 h to 6 d 300 million to 
2 billions

10–180 Gb Yes Yes

Illumina 
HiSeq Xd

∼150 <3 d 3 billions 1.6–1.8 Tb Yes Not yet

5500 
SOLiDd

∼60 7 d – 90 Gb Yes Yes

5500xl 
SOLiDd

∼60 7 d – 300 Gb Yes Yes

Ion PGM 
systeme

∼200 or 
∼400

2–4 h or 
4–7 h

0.4–0.5 million 
on 314 chip
2–3 million on 
316 chip
4–5.5 million 
on 318 chip

30–100 Mb on 
314 chip
300 Mb to 1 Gb 
on 316 chip
600 Mb to 2 Gb 
on 318 chip

No Yes

PacBio RS 
II SMRTe

4200–8500 0.5–3 h 50,000 per cell 275–375 Mb 
per cell

No Yes

ab stands for base and its multiple
bh: hours; d: days
cFirst-generation DNA sequencing or Sanger-based DNA sequencing technology. ABI 3730xl: Applied Biosystems 
3730xl DNA Analyzer (Life Technologies Corporation, Carlsbad, CA).
dSecond-generation DNA sequencing. Roche 454 GS Junior and Roche 454 GS FLX+ systems from Roche 
Diagnostics Corporation (454 Life Sciences, Branford, CT). Illumina MiSeq, HiSeq 2500 and HiSeq X from Illumina, 
Inc. (San Diego, VA). 5500 and 5500xl SOLiD sequencer from Life Technologies Corporation (Carlsbad, CA).
eThird-generation DNA sequencing. Ion PGM system from Life Technologies Corporation (Carlsbad, CA). 
PacBio RS II SMRT system is based on single-molecule, real-time (SMRT) DNA sequencing technology from 
Pacific Biosciences (Menlo Park, CA).
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facilities, cost, availability, turnaround time, and scope of the project 
will be part of the decision-making process. Let’s not forget that the 
hypothesis and the goal should be the true drivers. Table 1.1 shows the 
characteristics of the different high-throughput sequencing technolo-
gies. Each sequencing platform is characterized by their strength and 
weaknesses regarding read length, bias in AT- or GC-rich regions and 
their ability to sequence homopolymers.46,47

How much sequencing depth is needed? Determining the number of 
reads required is a tradeoff between the minimal numbers of reads needed 
to allow an informative and statistical significant analysis and the avail-
able budget. This choice is driven by both the platforms and your experi-
mental needs such as the previous knowledge of the relative abundance 
of your organism(s) or metabolic pathway(s) of interest. If your metage-
nome or metatranscriptome is of a relatively low complexity, you can use 
available genome sequences to evaluate the coverage needed.48 For a meta-
transcriptome, you’ll have to adapt the sequencing coverage if your focus 
is the most abundant transcripts or the rare transcripts. It has been shown 
that millions of 16S rRNA reads do not appreciably increase the extracted 
information and that a cost-efficient read number is sufficient to discrimi-
nate adjacent sites.1,9 In contrast, during the analysis of the stool micro-
biome of 100 individuals, increasing the depth of sequencing from 4.5 to 
11.7 Gb on average per sample, the human fecal gene catalog increased 
from 3.349 to 5.1 million nonredundant microbial genes,8 respectively.

Multiplexing of samples has both decreased the cost and allowed to 
control the number of reads for batch of samples. This approach tags 
each sample with a unique barcode that is also sequenced. The post-
sequencing computing pipeline allows the reads to be binned based on 
the sample of origin, allowing many samples to be simultaneously se-
quenced.50 Additional hidden costs that should be kept in mind are li-
brary construction required for preparing the DNA to be sequenced, 
kits, consumables, labor, instrument initial costs and maintenance, per-
sonnel support, indirect cost rate, etc. Further additional costs might 
be associated with the bioinformatics required for filtering low-quality 
reads, sequence assembly for pair-ended reads, removing human origin 
contaminating reads, providing raw or processed reads to your laborato-
ry, and data submission. It’s a discussion that you may want to have up-
front with your collaborator and/or your sequencing facility of choice.
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Read quality is always a parameter to take into account. One of the 
most common metrics for assessing sequence quality data is the Q score. 
Low Q scores (below 20) can lead to increase false-positive variants. Q20, 
which represents an error probability of 1%, is an accepted community 
standard for a high-quality base, similar to the expectation of Sanger-
based DNA sequencing. As the technologies improve, we can expect qual-
ity standard of Q30 (error probability of 1–1000) and above to be the norm.

 DATA STORAGE AND DATA ANALYSIS

Next-generation sequencing moved us from the kilo- and megabytes size 
files to the mega- and terabytes size file world. Although this might not 
be of great importance when you are performing a single metagenomics 
experiment, it can quickly become an issue in large-scale studies. To put 
this in context, the HMP 16S rRNA-targeted approach generated about 
250 megabases, while the shotgun sequencing approach produced over 3 
terabases.8 While the former can be handled on a traditional computer, 
the latter requires a lot of computing time (or CPU hours) on a com-
puter or computer cluster with another class of technical specifications. 
An alternative is the use of remote or cloud computing power through 
virtual machine approaches.51 Be sure that the data and related informa-
tion is secured during transfer and in the cloud.

When focusing on 16S rRNA-targeted approach, the availability of 
packaged analysis pipelines greatly facilitates the process. Mothur and 
QIIME are not the only available options, although both have shown 
consistency of improvement and regular updates over the last few 
years.52,53 These pipelines include statistical tools that allow a complete 
analysis of your dataset including your metadata. As we have been fo-
cusing on the quality of the input and output of metagenomic analysis, 
it is important to note that the denoising step is a crucial step that can 
increase microbial diversity (up to a meaningless amount if  read qual-
ity filtering and chimera removal are not performed) or restrict the ob-
served diversity based on the settings.54 There is a balance that must be 
attained; however, this can be a bit more difficult to achieve when con-
ducting the investigation of an understudied microbiome.

Whole genome shotgun sequencing leads to the information about 
the DNA and/or the RNA in the sample. The applications can and have 
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been numerous. The focus might be on metabolism, discovering new 
metabolic or antibiotic pathways, phylogeny, site comparison, the 
distribution of single nucleotide polymorphism in the microbiome(s), 
the influence of cancer or antibiotic treatment, the behavioral effect, etc. 
From the same dataset, phylogenetic placement of the microbiota pres-
ent in the sample can be obtained from the gene pool instead of the 16S 
rRNA gene as their relative abundance in the dataset is low.8,55,56 Pack-
aged analysis pipelines including statistical tools are available to down-
load or as an Internet resource. An incomplete list of those resources 
includes CAMERA,57 EBI metagenomics,58 IMG/M,59 MEGAN,60 
METAREP,61 and MG-RAST.62 For all metagenomics applications, 
commercial software replace or complement freely available tools.

All bioinformatics tools rely on databases to add layers of informa-
tion, from phylogeny to function. While some are based on only one 
technology (such as the gene catalogs from METAhit and the HMP), 
others have evolved through generations of approaches and technologi-
cal advancements such as COG,63 KEGG,64 GenBank, and all the other 
international depositories.65 The lack of standardization, inconsistent 
annotation, and the different technologies leading to specific errors un-
known to the investigator create some challenges. Curated databases are 
attempts to limit those issues and often decrease the dataset size by re-
moving information (e.g., sequences) not relevant to the focus in ques-
tion. Some of these databases include CAZy,66 Greengenes,67 HOMD,14 
and MetaCyc.68 The power of additional layers of information is in their 
enrichment of the content that we can derive from a dataset. However, 
we should keep in mind that part of the information from the dataset 
is unavailable as it did not perfectly match to a previously obtained da-
taset. With the diversity of microbial strains yet to be sequenced, the 
answer to your scientific question might reside in the conserved proteins 
without associated function, or gene(s) or gene set that have never been 
deposited before.

 DATA AND PUBLICATION

Any metagenomic project should include a plan for sharing the data 
collected to the scientific community, including sequence data and meta-
data. The International Nucleotide Sequence Database Collaboration 



18 Metagenomics for Microbiology

(INSDC, http://insdc.org) hosts some of the repositories for the collec-
tion and dissemination of nucleic acid datasets. INSDC is a joint effort 
hosting the following computerized databases: DNA Data Bank of 
Japan (Japan), GenBank (USA), and the European Nucleotide Archive 
(based in the United Kingdom).69

The need to archive well-defined contextual metadata has been rec-
ognized by the community, leading to the creation of the Genomic 
Standards Consortium. Their mission is to work toward: 1) the imple-
mentation of new genomic standards, 2) methods of capturing and ex-
changing the information captured in these standards, and 3) harmo-
nization of information collection and analysis efforts across the wider 
genomics community.70 From this effort arose the creation of minimum 
information requirement for both genomes and metadata to be sub-
mitted to the journal and sequence repositories. The MIGS (minimal 
information about a genome sequence), MIMS (minimal informa-
tion about metagenome sequence), MIMARKS (minimal information 
about marker gene sequence), and MIxS (minimum Information about 
any (X) sequence) specifications are checklists that both standardize 
and enhance our ability to further analyze datasets for either training 
or complementary analysis.71,72 The adoption of such standards elevates 
the quality, accessibility, and utility of  the information collected by the 
data repository.

As of yet, there is no standard format to present how the data was 
analyzed. In the best interests of all, the format should include the meth-
ods, tools, and parameters used in the analysis. One option is to make 
the information available as an online appendix to the published article. 
There is no such thing as pressing a button and getting the completed 
analysis. Professional scientists, students, and citizen scientists encoun-
ter the same issues. Similar standards of high quality should be put into 
service for the benefits of the biosphere.

 LET’S TALK ABOUT THE STATUS QUO

In science, the status quo, the existing state of affairs, and the dogma, 
the established opinion and doctrine, often go hand in hand. Every time 
a new technology challenges, the status quo resistance occurs, not al-
ways in the most constructive of ways. It is not our place to choose for 
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you where you stand in the debate regarding the progresses supported 
by metagenomic approaches. One clear progress is the flow of data. It 
creates more statistical power to discriminate the aspect(s) of your hy-
pothesis validation, and offers opportunities for validating previously 
published hypothesis and for hypothesis generation.

What about the “old data,” the ones published using more restricted 
or better focused analyses? There is no current methodology that can 
yet replace quantitative PCR for detecting the relative abundance of 
host versus microbial genetic abundance. The previous approaches for 
cultivation-independent analyses are here to guide us by facilitating the 
analysis and providing the trampoline needed for the next discovery. The 
high dimensionality of the datasets is potentially a challenge, but it also 
brings new opportunities to create a validated system biology approach 
to better understand biological function.

The conceptual and practical details are project specific and all part-
ners should be part of the discussion and project building (primary in-
vestigator, co-investigators, statistician, bioinformatician, core facilities, 
providers, suppliers, IT department, etc.). This is a call to students, pro-
fessional scientists, and citizen scientists alike, to create new datasets and 
tools that are needed. Please research, share, and disseminate.
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Long-Read, Single Molecule, Real-Time (SMRT) 
DNA Sequencing for Metagenomic Applications

Brett Bowman, Mincheol Kim, Yong-Joon Cho and Jonas Korlach

Elucidating the Earth’s microecology remains one of the foremost chal-
lenges in biology, with profound implications for human health, agriculture, 
chemistry, energy, and other areas. We have thus far only captured a very 
small fraction of the Earth’s microbial diversity, with estimates of the num-
ber of bacterial and archaeal “species” reaching into the millions.1 However, 
our understanding of microbial communities has been dramatically im-
proving through the use of high-throughput DNA sequencing technologies.

The sequencing of ribosomal RNA (rRNA) genes, in particular, the 
small subunits (SSUs), have been widely used for over 30 years for study-
ing microbial community structure, despite limitations imposed by DNA 
sequencing technologies.2 For years, the only method available was to 
painstakingly clone each individual gene of interest, tile over it with mul-
tiple Sanger sequencing reactions, and manually stitch the results togeth-
er.3 As recently as 2008, Sanger sequencing was still the most common 
approach, as contemporary next-generation sequencers with read lengths 
of 100 base pairs or less were unable to significantly differentiate taxa.4

This changed rapidly starting around 2009 with the introduction of 
the titanium sequencing chemistry for 454 pyrosequencing, providing 
read lengths of greater than 300 bases for hundreds of thousands of reads 
at a time.5 Simultaneously, the development of specialized software tools 
such as Mothur,6 the RDP classifier,7 and QIIME8 allowed the analysis 
of such large datasets. More recently, this trend has continued with the 
adoption of approximately 200 base pair assembled paired-end Illumina 
reads for some metagenomics applications,9 allowing for sequencing mil-
lions of reads in a single experiment, albeit at the cost of reduced read 
lengths compared with other sequencing technologies. The adoption of 
next-generation sequencing for metagenomics thus led to an exponential 
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increase in the amount of data that could be generated from uncultured 
samples, providing the foundational method for projects such as Metage-
nomics and Microbial Ecology10 and the Human Microbiome Project.11

However, efforts to obtain clear pictures of metagenomes in this fash-
ion have been complicated by the short read lengths that limit the resolv-
ing power of rDNA sequences, as well as inherent biases from both the 
polymerase chain reaction (PCR) and the next-generation sequencing 
technologies.12 The largest source of bias in community 16S sequencing 
is caused by the initial PCR step.13 Careful primer selection is important 
both because different variable regions of the 16S gene show differing 
capacities to differentiate taxa14 and no primer sites in the gene are per-
fectly conserved across all phyla.15 Read lengths between 500 and 700 bp 
are sufficient to differentiate most phyla,16,17 but which regions are re-
quired vary, and no region has the resolution of the full-length gene.

In addition, biases inherent in the next-generation sequencing tech-
nologies can affect the data interpretation.18 For 454 sequencing, this 
led to the development of PyroNoise that attempts to reduce the effect 
of context-specific error on the analysis of amplicons.19 To our knowl-
edge, no similar tools have been developed for Illumina-based sequence 
data, despite the platform also having known context-specific errors.20 
GC-content bias can also affect the quality of the second-generation 
sequencing data,21 and this effect has been directly studied on the 454 
platform for 16S sequencing.22,23

Here, we describe the application of long sequence reads provided by 
Pacific Biosciences’ single molecule, real-time (SMRT) DNA sequencing 
to decode the entire 16S rRNA gene. SMRT sequencing is based on mon-
itoring the activity of individual DNA polymerase molecules and detect-
ing its activity of successive nucleotide incorporations in real time.24,25. 
Compared with other sequencing methods, it exhibits much longer read 
lengths (8500 bp on average with the latest (P5-C3) sequencing chemis-
try), the least sequence context bias,26 and a high consensus accuracy due 
to the random nature of sequencing errors.27 By exploiting these charac-
teristics and moving from shorter amplicons to sequencing the full-length 
gene significantly reduces the primer bias in 16S community profiling. 
The selection of specific variable regions, important when read length is a 
limiting factor, is no longer required as the entire sequence is obtained in 
a single read. Although biases inherent in primer designs are unavoidable, 
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the sites flanking the terminal V1 and V9 regions are among the most 
conserved: primers targeting those sites, commonly referred to as either 
27F/1492R or GM3/GM4, are among the most extensively used and op-
timized 16S primers,28 capturing approximately 87% of known sequences 
with less than two mismatches.15 In addition, following the initial PCR, 
there are no additional amplification steps during library preparation 
and sequencing, avoiding any further amplification bias. SMRT sequenc-
ing has been shown to display very little bias with respect to GC content 
and sequence context,29 resulting in higher sequence quality across the 
entire 16S rRNA gene and reduced bias in community structure.

 FULL-LENGTH 16S rRNA GENE SEQUENCING

To demonstrate the application of SMRT sequencing to surveying 
metagenomic amplicons, we sequenced a metagenomic mock commu-
nity consisting of an equimolar mixture of 20 known, full-length 16S 
rRNA gene sequences from 12 distinct bacterial lineages. We analyzed 
PCR-amplified, full-length 16S rRNA genes using 27F/1492R primers 
and prepared sequencing libraries from the amplicons according to the 
standard library preparation protocol.30 Sequencing was performed in 
triplicate by running three barcoded technical PCR replicates on each 
SMRT Cell. To generate high-quality, full-length 16S sequence reads, we 
employed circular consensus sequencing (CCS),30 which allows for the  
repeated sequencing of the same DNA molecule to generate a high-quality  
intramolecular consensus (Figure 2.1A). The median read length for se-
quenced molecules was 5560 bp or approximately 3.5 passes over the 
∼1500 bp template sequence. Each SMRT Cell produced 31,000–43,000 
raw sequence reads, of which 17,000–24,000 reads contained sufficient 
coverage of the template to generate CCS sequences. It is worth not-
ing that the samples were somewhat underloaded suggesting that even 
greater throughput could be achieved upon optimizing loading condi-
tions. Comparison of the predicted CCS read accuracy with the known 
reference sequences showed excellent concordance, as calculated from 
the per-base phred quality scores (Figure 2.1B), with a median predicted 
accuracy of 99.7% over all reads (Figure 2.1C).

The sequences were analyzed with a combination of standard tools 
available in Mothur6 and custom python scripts to accommodate the 
unique needs of single-molecule sequencing data, collectively available  
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for public use on Github as rDnaTools.31 Sequences from different 
replicates were demultiplexed if  at least one barcode sequence could 
be identified with HMMER,32 which recovered 99.5% of all CCS  
sequences. Truncated sequences under 500 bp and concatenated prod-
ucts over 2000 bp were discarded. De-multiplexed sequences were then 
aligned to the SILVA reference alignment of bacterial ribosomal SSU 
sequences. Despite a range of sequence lengths (1483 ± 169 bp), 98.5% 
of all de-multiplexed sequences covered the entire canonical alignment  
(Figure  2.2). The differences in lengths are because of the biological 

Fig. 2.1. SMRT Sequencing of full-length 16S RNA generated from a mock community of 20 known sequences. 
(A) Schematic of generating high-accuracy 16S reads through circular consensus sequencing (CCS).  
(B) Concordance of predicted CCS accuracy versus observed accuracy against the mock community reference.  
(C) Histogram of predicted concordance with the reference for full-length 16S CCS sequences.
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Fig. 2.2. Sequence lengths of 16S rRNA gene SMRT sequencing CCS reads from a mock community of 20 known 
sequences. (A) Sequence lengths after barcode trimming and chimera filtering. (B) Fraction of 16S rRNA genes 
covered by the sequences after SILVA alignment.
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variation of 16S RNA gene lengths, mainly caused by more variability 
in the loop regions.

We then applied full-length 16S RNA gene sequencing to two un-
known samples that were isolated from a water and a soil metagenomic 
environment in Korea. These samples were selected in part because 
Asia has historically been underrepresented in public sequence data-
bases, comprising less than 3% of  publically reported environmental 
sequences to date.33 Thus, the high-throughput, full-length rDNA se-
quencing of  these samples could be used both to analyze the struc-
ture of  the respective communities and to generate reference sequences 
for future studies. In order to ensure accurate subsequent clustering, 
sequences with less than 99% predicted concordance were filtered 
out, leaving approximately 15,000 high-quality reads per SMRT Cell 
for analysis. Chimera detection was carried out with the Mothur im-
plementation of  Uchime,34 and 2.4% of  sequences were removed as 
probable chimeras. This is significantly lower than the published rates 
of  5–45% chimera formation for 454 data,35 despite >99% recall of 
species-level chimeras from in silico simulations (unpublished results). 
This suggests that, in addition to the longer read lengths, the lack of 
amplification during library preparation is a significant additional ben-
efit to utilizing SMRT sequencing for metagenomics. All remaining se-
quences were clustered into operational taxonomic units (OTUs) at the 
97% similarity level, using the average neighbor clustering algorithm 
in Mothur. Excluding singletons and doubletons, this resulted in OTU 
counts of  318 for the water and 684 for the soil sample (Figure 2.3). A 
consensus sequence generated for each OTU was then taxonomically 
classified with the RDP classifier.7 Interestingly, the OTU counts do 
not strongly correlate with the number of  taxonomic groups found 
for each sample as the water and the soil samples had similar numbers 
of  taxa (137 for water vs. 100 for soil, Figure 2.3), but a greater than 
twofold difference in OTUs (318 for water vs. 684 for soil, Figure 2.3). 
This difference highlights the increase in resolution power provided 
by full-length 16S sequences. Short reads are typically limited in taxa 
resolution, whereas the full-length sequences provide insights into the 
level and distribution within taxa that provide the means to expand 
the information depth of  metagenomic databases and develop tools to 
characterize this diversity.
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Fig. 2.3. Composition of environmental (A) aquatic and (B) soil samples as determined by 16S rRNA gene sequencing using full-length SMRT Sequencing. Left 
panel: taxonomic assignments; right panel: OTUs. The numbers on the top of the panels indicate the total frequencies obtained from one SMRT Cell. The legend on 
the right only contains a partial list of taxa for illustration purposes and is not meant to be exhaustive. Regions of black in the composition graphs are because of low 
abundance groups that get fused by the black line thickness.
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The consensus sequences of the largest OTUs from each identified 
taxa were used to construct a phylogenetic tree for each community. The 
abundances of CCS reads and OTUs were tabulated for each taxonomic 
group and plotted next to their associated leaf on the tree (Figure 2.4). 
It is worth noting that while the two distributions are highly similar in 
the soil sample, they significantly diverge in the aquatic community. 
These differences may stem from differential selective pressures between 
OTUs, which would be more difficult to quantify without the resolution 
of clustering enabled by full-length rDNA sequencing.

 DISCUSSION

Although metagenomic community identification has become the pri-
mary use for DNA sequencing, many service providers world-wide still 
use 16S rRNA gene to identify tens of thousands of individual bacte-
rial isolates, relying on the expensive and labor-intensive approach of 
cloning and tiling Sanger reads over each sequence16. The application of 
high-throughput, multiplexed, full-length 16S SMRT sequencing36 dem-
onstrates an alternative approach to strain identification. By sequencing 
the whole gene in a single reaction, it becomes possible to avoid cloning 
and obtain the full gene sequence directly from the PCR product. In ad-
dition, the ability to sequence multiple amplicons, multiplexing, onto a 
single SMRT Cell offers the possibility of replacing a bank of capillary 
sequencers with a single PacBio RS II, as a single 2-hour run can pro-
vide complete sequences for dozens of amplicons.

Another limitation of current approaches to strain identification is 
the limited resolution provided by the 16S rRNA gene alone37. It is well 
known that even the full-length 16S gene is insufficient to accurately 
separate some lineages of bacteria38. A common practice has been to 
perform restriction fragment-length polymorphism (RFLP) of the inter-
genic spacer region (ISR) between genes in the ribosomal operon instead 
of sequencing homologous populations39. However, this method is only 
cost-effective when the family is already known and the analysis can be 
carried out directly on the PCR product. Application of this method 
to unknown or environmental samples additionally requires the sepa-
rate cloning and sequencing of the rRNA operon for the determination 
of genus40. Since the additional information is not always needed, most 
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33Fig. 2.4. Phylogeny of environmental 16S rRNA samples from (A) an aquatic and (B) a soil metagenomic community. Bars denote the number of CCS sequences 
(red) and OTUs (green) associated with each taxonomic group.
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strain identification has been done with a single amplicon of between 
400 and 1,500 bp depending on the resolution required41.

Ideally, one would perform only a single amplification for the en-
tire rrn operon, encompassing at a minimum the 16S and 23S genes 
in addition to the internal transcribed spacers (ITS)42. The combina-
tion of multiple, co-linear rRNA genes provides equivalent resolution 
to multi-locus sequence typing (MLST), while negating the need for 
multiple PCRs or the generation of new reference databases43. This is 
impractical if  the amplicon needs to be cloned in order to be sequenced 
in parts. A tantalizing possibility is the sequencing of the entire 5 kb 
length of the operon in a single read. With the full sequence, genus-level 
identification could be obtained and validated by comparing the clas-
sification of the 16S and 23S rRNA genes, while species-level specificity 
could be obtained from the ITS. The individual component sequences 
could also be used to fill numerous gaps in current rRNA databases, 
many of which contain strains not yet sequenced at the other loci44. 
With >15 kb read lengths attainable with SMRT sequencing, the op-
portunity exists to take this approach, but to our knowledge no groups 
have done so yet. In general, other markers that had not been adopted 
due to previous read length limitations may also now be more accessible 
to sequence analysis, e.g. rpoB45. This also applies to 18S rRNA char-
acterization for eukaryotic metagenomes and ITS sequencing for fungal  
metagenomes.

Another consequence of requiring cloning for strain identification 
with current protocols is that the resulting sequence is representative 
of only a single rRNA gene, while it is known that most bacteria have 
multiple, varying copies of their ribosomal genes46. Since intra-species 
diversity of 16S rRNA genes is small enough that it is unlikely to affect 
sequence classification47, this diversity from multiplicity has not been well 
characterized and is not well captured for most lineages by current rRNA 
databases. The rRNA operon copy number appears to significantly cor-
relate with the species’ ecological strategy, which is of obvious interest in 
metagenomic studies48. If  the number of operons can be easily estimated 
for each lineage, it may be possible to incorporate this information into 
new methods of measuring metagenomes. Such methods could offer ad-
ditional insight into the structure and function of microbial communities, 
beyond the measures of diversity and species richness currently available.
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Though ribosomal rRNA gene sequencing has been a foundational 
tool for metagenomics, it has long been understood that it provides only 
a limited view of microbial communities. Specifically, outside the context 
of their originating genomes, rRNA genes provide no direct information 
about the function of the microbe in its community49. Without knowl-
edge of function, it is impossible to determine the causes of a microbe’s 
effect on its environment or the role it plays in the community. This is es-
pecially important to understanding the stability of metagenomic com-
munities given the strong evidence for functional redundancy among 
healthy communities50. Methods that have been developed to elucidate 
these questions have been termed “functional metagenomics”51.

The first methods for functional metagenomics involved sequencing 
BACs and fosmids of cloned metagenomic sequence52, and these meth-
ods have already been applied in conjunction with SMRT sequencing, e.g. 
for the characterization of antibiotic resistance genes in cow manure53. 
The paper highlights the power of the long sequence reads to capture the 
genomic context of antibiotic resistance genes to infer the taxonomic 
affiliation of the origin of the DNA which is critical for drawing conclu-
sions about horizontal transfer of antibiotic resistance genes in bacterial 
populations. With the advent of next-generation sequencing the field has 
moved towards de novo shotgun sequencing of metagenomes for func-
tional analysis54. This has greatly increased the throughput with which 
functional metagenomic data can be generated, but the resulting contigs 
have typically been more than an order of magnitude smaller than those 
possible from cloned libraries55. The smaller contig sizes pose a chal-
lenge for the interpretation of metagenomic sequence data, and multiple 
methods have been developed that attempt to bin contigs from similar 
organisms based on their k-mer frequencies. These methods have been 
limited by the wide diversity of k-mers and GC content within any one 
genome, coupled with short read lengths and context-specific biases of 
second-generation sequencing. In principle, long-read sequencing data 
should enable more detailed functional examinations of metagenomes, 
requiring less binning due to larger contigs and exhibiting less context-
specific bias. Combined with recent advances in generating finished 
bacterial genomes56, these capabilities could also improve the charac-
terization of single-cell isolation derived metagenomes57. With the abil-
ity to identify both species and community structure from metagenomic 
rDNA, as well as the potential for improving functional metagenomics, 
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we anticipate that SMRT sequencing will open new opportunities for the 
analysis of metagenomic communities.
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Ribosomal RNA Removal Methods 
for Microbial Transcriptomics

Shaomei He

 INTRODUCTION

Transcriptome is the complete set of transcribed sequences in a cell, in-
cluding messenger RNA (mRNA), ribosomal RNA (rRNA), transfer 
RNA (tRNA), and regulatory noncoding RNA. Metatranscriptomics, 
also referred to as “environmental transcriptomics” or “microbial com-
munity transcriptomics,” studies the entire collection of transcribed 
sequences from natural communities.1 As a powerful tool in the post-
genomics era, transcriptomics facilitates the understanding of gene 
structure and regulation, provides a snapshot of gene expression under 
specific conditions, and reveals regulation of functions responding to 
different environments.1–3

Microbial transcriptomics is evolving with technological advancement, 
from constructing cDNA clone libraries to oligonucleotide microarrays, 
and more recently to next-generation sequencing technology-enabled 
whole transcriptome shotgun sequencing (RNA-Seq). RNA-Seq over-
comes many technical constraints in microarrays, such as limited dynamic 
range, reference genome requirement, and hybridization efficiency and 
specificity. Together with the increasing throughput and decreasing cost 
of ultra-high-throughput sequencing, RNA-Seq has become a more pop-
ular choice than microarrays for microbial transcriptomics.

A major technical challenge for RNA-Seq is the low relative abun-
dance of mRNA in total cellular RNA (1–5%),4 the bulk of which is 
rRNA and tRNA,5 particularly rRNA. For example, rRNA sequenc-
es predominated the generated cDNA library up to >90% of the en-
tire sequences,6–9 wasting enormous amounts of sequencing resource. 
Therefore, researchers often chose to eliminate rRNA before sequencing 
in order to improve mRNA detection sensitivity. Unlike eukaryotic 
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mRNAs, which have poly(A) tails10 and can be selectively synthesized 
into cDNA using poly(T) primers, prokaryotic mRNAs lack poly(A) 
tails long enough for this application. This had greatly hindered RNA-
Seq studies on prokaryotes.

Over the years, different methods have been developed and applied to 
eliminate prokaryotic rRNA with varied success. These methods employ 
unique features of rRNA relative to non-rRNA, such as size, sequence, 
59-phosphate, secondary structure, and abundance, and commercial kits 
are available for some of these methods (Table 3.1). The rRNA elimina-
tion step can be performed prior to, during, or after cDNA synthesis. 
Compared with the elimination during or after cDNA synthesis, the re-
movals prior to cDNA synthesis generally require higher amounts of 
input RNA (e.g., microgram quantities), and the manipulation is on 
raw RNA, therefore having a higher risk of mRNA degradation during 
sample processing.

So which method should be chosen? Two most important consid-
erations in method selection are efficiency and potential bias. Some 
limitations and biases are obvious, while some are not well recognized. 
Therefore, a number of benchmarking and validation studies were 
conducted to systematically evaluate commonly applied methods, us-
ing single-species cultures, simple synthetic communities, and complex 
nature environmental samples.6–9,11 Owning to the high-throughput se-
quencing applied, besides assessing the representation rRNA in total 
sequences, these studies were able to evaluate rRNA removal fidelity, 
that is, the ability to preserve relative mRNA transcript abundance after 
rRNA removal, compared with the original crude extract. In light of 
these findings, methodologies for rRNA removal are discussed in this re-
view with a focus on their advantages, limitations, and potential biases.

 SIZE SELECTION BY GEL ELECTROPHORESIS

Intact 5S, 16S, and 23S rRNAs are easily recognizable as distinct sharp 
bands on electrophoresis gels after size separation. To isolate mRNA, 
McGrath et al.12 extracted RNA from regions between the 23S and 16S, and 
between the 16S and 5S rRNA bands on the agarose gel. They tested this 
method on Escherichia coli and a number of environmental samples, and 
observed increased recovery of mRNA in resulted cDNA clone library.12 
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Table 3.1 Summary of Ribosomal RNA Removal Methods

Method rRNA Feature Employed RNA Input Commercial Kit

Prior to cDNA synthesis

Size selection by gel electrophoresis Size

High

Denaturing high-performance liquid chromatography Size and interaction with bead matrix

59 phosphate-dependent exonuclease digestion
59-monophosphate of processed 
RNA

Epicentre’ mRNA-ONLY prokaryotic mRNA 
isolation kit

RNase H digestion

Antisense sequences to rRNA as 
primers or probesSubtractive 

hybridization

Commercial generic probes
Ambion’s MICROBExpress bacterial mRNA 
enrichment kit; Invitrogen’s RiboMinus transcriptome 
isolation kit; Epicentre’s Ribo-Zero rRNA removal kit

Organism-specific probes

Community-specific probes

Biased 39 polyadenylation against rRNA Complex with ribosome and form 
secondary structure

Low
Ambion’s MessageAmp-II bacteria RNA 
amplification kit

During cDNA synthesis

Selective priming 
with not-so random 
oligomers

Without amplification
Differential occurrence of hexamers 
in rRNA relative to non-rRNA

Low

With PCR amplification
Low

NuGEN’s Ovation prokaryotic RNA-Seq system

After cDNA synthesis

cDNA library 
normalization

With duplex specific nuclease 
digestion

High abundance of rRNA Low

Evrogen’s Trimmer-Direct cDNA normalization kit

With hydroxyapatite 
chromatography separation
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The limitations of this method are obvious: fragmented rRNA or pre-
rRNA not at the regular sizes of intact mature rRNA cannot be removed, 
while mRNA that co-migrates as rRNA, because of similarity in size and 
electrophoretic behavior, can be excluded. In addition, the amount of in-
put RNA needs to be high enough for gel visualization and subsequent 
mRNA recovery, and it is more challenging to maintain RNase-free in gel, 
buffer, and electrophoresis equipment than in a single tube.

 DENATURING HIGH-PERFORMANCE LIQUID 
CHROMATOGRAPHY

The physical separation of RNA can also be achieved through RNA 
chromatography with a nonporous alkylated poly(styrene divinylben-
zene) bead matrix as the stationary phase.13 The separation is largely 
based on RNA size and strength of interaction with the bead matrix. 
Selective collections can be performed using eluents of different ionic 
conditions to wash RNA off the bead matrix. Castro et al.14 adopted de-
naturing high-performance liquid chromatography for RNA separation 
and removed 78–92% of rRNA extracted from Corynebacterium pseu-
dobuberculosis. This method provides fast separation of bulk rRNA and 
mRNA (within half  an hour). However, a high RNA input (e.g., 20 mm14) 
is needed to recover mRNA. In addition, small RNAs elute faster and 
can be missed from the recovery. Whether the chromatographic profile-
based RNA separation is applicable for other microorganisms or for 
complex environmental samples remains to be examined.

 59 PHOSPHATE-DEPENDENT EXONUCLEASE DIGESTION

A kit based on specific enzymatic degradation of rRNAs (mRNA-
ONLY Prokaryotic mRNA Isolation kit) was developed by Epicentre 
(Madison, WI). Their Terminator 59-phosphate-dependent exonuclease 
is a processive 59 to 39 exonuclease, selectively degrading RNA mole-
cules with 59-monophosphates, but not RNAs with 59-triphosphate or 
hydroxyl groups. As mature 5S, 16S, and 23S rRNAs are processed from 
a single pre-rRNA transcript, they possess 59-monophosphates and are 
susceptible to this enzyme, while intact mRNAs carry 59-triphosphates 
and are resistant to the degradation. Since it employs a general feature 
of processed rRNAs, this method is anticipated to work broadly for 
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bacteria and archaea, therefore predicted to be useful for complex mi-
crobial communities. However, unexpected low removal of rRNAs from 
an archaeal Halorhabdus sp. by this kit was observed.6 The authors sus-
pected that some of the processed 59 ends of archaeal rRNAs may have 
exposed a hydroxyl group rather than a monophosphate, as also sug-
gested by the poor ligation of archaeal Sulfolobus solfataricus rRNAs to 
adapters that require an exposed 59-monophosphate.15

The effectiveness and fidelity of this method can be affected by the 
presence of partially degraded mRNA in crude extracts.6 In bacteria 
and archaea, many mRNAs have short half-lives and degrade in min-
utes after transcription.16 Continuous transcription is needed to main-
tain translation. Because of the rapid turnover, many extracted mRNAs 
may be partially degraded. One of the mRNA degradation mechanisms 
in bacteria starts with the conversion of 59-triphosphates to monophos-
phates, which facilitates subsequent internal cleavage of mRNA by 
RNase E.17 Therefore, a fraction of mRNAs is monophosphorylated 
and fragmented, and thus susceptible to the 59-monophosphate-specific 
exonuclease digestion. Indeed, mRNAs with short half-lives and high 
turnover rates, presumably partially degraded mRNAs, were preferen-
tially lost after applying this kit.6 Such mRNA degradation not only 
compromised mRNA fidelity but also counteracted the rRNA removal 
effect.6 Conceivably, this enzymatic treatment could provide a useful 
snapshot of stable full-length mRNA; theoretically, it would be useful to 
identify transcription start sites because to its enrichment for primary 
transcripts with 59-triphosphates.

 RNase H DIGESTION

Another enzymatic rRNA elimination method utilizes RNase H that 
specifically degrades the RNA in DNA:RNA hybrids but not single-
stranded RNA.18 This approach was applied to profile Staphylococ-
cus aureus gene expression.19 Total RNA was first subjected to reverse 
transcription with a mix of primers specific to 16S and 23S rRNAs. 
Subsequently, RNase H was added to degrade the RNA fraction of 
the cDNA:RNA duplex, followed by a DNase I treatment to degrade the 
cDNA fraction. Therefore, complete RNase H and DNase I digestions 
are required for the effectiveness of this method. Since the specificity 
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is affected by primer sequences used in reverse transcription, potential 
limitations and biases associated with primer targeting range are antici-
pated. In addition, as the reverse transcriptase falls off  templates with 
a certain probability, the longer the transcript is, the less likely its full 
length is covered. Therefore, the 59 ends of rRNA, especially 23S rRNA, 
may not be effectively removed. A number of primers targeting multiple 
sites across rRNA molecules are needed to improve effectiveness.

 SUBTRACTIVE HYBRIDIZATION WITH  
rRNA-SPECIFIC PROBES

Subtractive hybridization employs antisense sequences of rRNAs as 
specific probes. After hybridization, rRNA:probe hybrids bind to beads, 
allowing their subtraction from the solution.20 Subtractive hybridization 
is the most commonly used method so far, partly owning to the avail-
abilities of several commercial kits (Table 3.1).

The MICROBExpress kit from Ambion (Austin, TX) is the most 
widely used commercial kit in depleting rRNA from bacteria. One end 
of the capture oligonucleotide probes targets conserved regions of 16S 
and 23S rRNAs, and the other end contains supplementary sequence 
to a secondary probe coated on magnetic beads. This probe configura-
tion allows the capture of rRNA:probe hybrids to the beads after two 
sequential hybridizations. A major strength of this kit is the great rRNA 
removal fidelity. The correlations of mRNA transcript abundance be-
fore and after rRNA removal by MICROBExpress were usually high-
er than other evaluated methods.6–8 For example, only a small number 
(2–3%) of transcripts exhibited greater than twofold change in expres-
sion relative to the sample without rRNA removal, suggesting that probe 
cross-hybridization to mRNA was minimal.6 However, the removal ef-
ficiency is highly dependent on organism(s) present in the sample, since 
the probes are only compatible with a subset of bacteria and the entire 
archaeal domain is not targeted. In some applications, two rounds of 
MICROBExpress were applied sequentially on metatranscriptome sam-
ples,21 presumably to improve mRNA enrichment. However, upon eval-
uation, two rounds did not produce a significant improvement in rRNA 
depletion over one round, suggesting that rRNAs with target sites were 
efficiently removed in the first round and additional round is unneces-
sary.6 In addition to the limited target range, the success of this kit is also 



 Ribosomal RNA Removal Methods for Microbial Transcriptomics 45

affected by RNA integrity, as demonstrated by the reverse correlation 
between rRNA removal and RNA integrity.6 Because of the very small 
number of probes employed by this kit, degradation and fragmentation 
increase the proportion of rRNA fragments without the conserved tar-
get sites, and therefore negatively affect the removal efficiency.

The more recently introduced Ribo-Zero kit (Epicentre) utilizes 
rRNA-specific biotinylated probes that can be subsequently captured 
by streptavidin-coated magnetic beads.22 Compared with MICROBEx-
press, Ribo-Zero offers rRNA removal from a broader range of Gram-
positive and Gram-negative bacteria. From the probe compatibility 
table provided by the manufacture, in addition to 16S and 23S, Ribo-
Zero also removes 5S rRNA in some cases, and several archaeal species  
are also targeted. In the comprehensive evaluation conducted by 
 Giannoukos et al.,7 Ribo-Zero clearly outperformed four other kits/
methods on bacteria with different GC contents, consistently reducing 
rRNA to less than 1% of total reads, while maintaining a high  fidelity 
comparable to that offered by MICROBExpress. When applied to real 
environmental samples from human feces, Ribo-Zero was able to  reduce 
rRNA to less than 5% of total reads.7 In addition, Ribo-Zero is also 
effective for RNA of low integrity, as confirmed by using a highly frag-
mented RNA sample.7 This improvement is likely because of higher  
numbers of proprietary probes designed along rRNA molecules.  
 The effectiveness of Ribo-Zero on metatranscriptome samples from di-
verse environments remains to be examined. Notably, it is suggested that 
its application on low-input RNA (e.g., below microgram quantities)  
should be avoided, as the effectiveness and fidelity were great-
ly  compromised.7 Therefore, this kit is probably not suitable for 
 environmental samples with low RNA yields.

In general, subtractive hybridizations using commercial kits can 
achieve high transcript fidelity but suffer from the limited target range 
offered by generic probes. Therefore, sample-specific subtraction strate-
gies have been applied using customized probes tailored for individual 
organisms or samples. In fact, prior to commercial kits, early versions 
of subtractive hybridization are organism specific, using biotin-labeled 
full-length or near full-length rRNA genes cloned into a plasmid23 or 
antisense rRNA in vitro transcribed from cloned rRNA genes.24,25 More 
recently, Li et al.26 developed an organism-specific subtraction system. 
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They first designed a computer program to select probes specific for 16S 
and 23S rRNA of the target organism without cross-hybridization to 
its mRNAs. The probe sequences were then polymerase chain reaction 
(PCR)-amplified from cDNA, cloned into a plasmid system and in vitro 
transcribed to generate biotin-labeled antisense rRNA probes. They 
tested this system on Mycobacterium smegmatis and obtained signifi-
cant rRNA reduction with minimal impact on mRNA. Theoretically, 
this system can be applied to monocultures or simple communities with 
known reference genome information.

For complex communities, Stewart et al.11 developed a community-
specific rRNA subtraction protocol potentially applicable to many dif-
ferent metatranscriptome samples. This method starts with extracting 
community DNA and RNA in parallel from a same sample. Near full-
length 16S and 23S rRNA genes were PCR-amplified from the DNA  
using bacterial, archaeal, and eukaryotic general primers, respective-
ly. Reverse primers contain T7 RNA polymerase promoter sequence, 
 allowing subsequent in vitro transcription to generate biotin-labeled 
 antisense rRNAs to subtract community rRNA. Ideally, probes generated  
from community RNA are more representative to rRNA composi-
tion than from DNA. However, as reverse transcription is less efficient 
for long transcripts (e.g., 23S rRNA), Stewart et al.11 chose DNA as 
 templates in order to synthesize nearly full-length antisense rRNA probes 
to maximize probe coverage along rRNA molecules for their effective-
ness on fragmented rRNA. When applied on marine metatranscriptome  
samples, this protocol successfully reduced rRNA to an average of 36% 
of total reads.11 As a single primer set may not amplify all phylogenet-
ic groups present in a complex sample, and the secondary structure of 
near full-length rRNAs may decrease hybridization efficiency, this pro-
tocol was later modified by Kukutla et al.27 and tested on a mosquito 
gut metatranscriptome. Probes generated from the four combinations of 
two forward and two reverse primers were pooled to maximize phyloge-
netic coverage. Some primer combinations generate shorter probes, pre-
sumably less prone to form secondary structure, and thus may facilitate 
the probes–rRNA hybridization. Despite the success, the community-
specific subtraction method has not been widely applied, mainly because 
of the time-consuming procedures, requiring more skills and individual 
optimization, compared with commercial kits.
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 BIASED 39 POLYADENYLATION AGAINST rRNA

Amara and Vijaya28 observed selective polyadenylation of E. coli mRNA 
but not rRNA in intact polysomes using a yeast-derived poly(A) poly-
merase, suggesting that the 39 ends of rRNAs are sterically blocked from 
polyadenylation when rRNAs are in complex with ribosomal proteins. 
Based on this observation, Wendisch et al.29 developed a bacterial mRNA 
enrichment method using biased polyadenylation toward mRNA fol-
lowed by purification with oligo(dT) chromatography. They tested this 
method on E. coli and obtained increased mRNA signals with similarity 
in transcript profiles when compared with results obtained from total 
RNA. Besides oligo(dT) chromatography purification, polyadenylated 
mRNAs can also be selectively synthesized to cDNA using oligo(dT) 
primers, and in vitro transcribed with T7 RNA polymerase to further 
boost the mRNA enrichment effect; this was applied by Frias-Lopez 
et al.30 to enrich mRNA from nanogram quantities of marine microbial 
community RNA. They reduced rRNA to 53% of the total sequences, 
and maintained relative abundance of most mRNAs, compared with 
unamplified transcriptome profiles. As the authors suggested, the en-
richment was not only because of preferential polyadenylation but 
also likely arose from the high degree of rRNA secondary structure, 
which prevented their efficient amplification.30 However, as Wilhelm 
and Landry31 pointed out, bias against 59 ends and especially against 
long transcripts was expected when priming with oligo(dT) primer as 
compared with random oligomers in reverse transcription, since reverse 
transcriptase is well known to fall off  templates as it progresses.

 SELECTIVE PRIMING IN cDNA SYNTHESIS

Usually, cDNA synthesis is primed with random oligomers (most fre-
quently hexamers) for “unbiased” transcriptome coverage. Theoretical-
ly, using a subset of  these entirely random oligomers that discriminates 
against rRNAs, one can selectively synthesize cDNA from mRNA. 
Based on the observation that many bacterial and archaeal rRNA se-
quences are richer in GC compared with mRNA and exhibit higher 
frequencies of  TTTT, Gonzalez and Robb32 applied HDTTTT and 
DHTTTT hexamers to prime cDNA synthesis from Methanocaldococ-
cus jannaschii and Pyrococcus horikoshii and improved their mRNA 
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detection by PCR. This method is easy to conduct in the laboratory 
and does not require high RNA inputs. Although the primer design was 
intended to be “universal” for bacteria and archaea, the differential oc-
currence of  TTTT in rRNA versus in non-rRNA broadly varies among 
microorganisms, causing variation in removal effectiveness and associ-
ated bias, especially against GC-rich regions in a transcriptome and 
GC-rich organisms in a community. Therefore, selective primers with 
higher specificity were later designed computationally. By aligning all  
possible hexamers to rRNA and non-rRNA genes, Armour et al.33 
 selected a subset of hexamers without perfect match to rRNA while pro-
viding sufficient coverage to non-rRNA (referred to as “not-so random  
primers”). This approach was applied to Rhodopseudomonas palustris, 
and 925 out of  the total 4096 possible hexamers were selected.34 How-
ever, nonuniform coverage even within a transcript was observed, due 
to reduced randomness in priming cDNA synthesis.34 Therefore, this 
method is not suitable for applications such as transcription start site 
detection and operon relationship determination, where coverage uni-
formity is required.

A commercial kit with generic selective primers, Ovation Prokary-
otic RNA-Seq System was developed by NuGEN (San Carlos, CA).35 
The not-so random primers were designed against a sequence collection 
from bacterial and archaeal strains representing major phyla, therefore 
predicted to be effective for a wide range of prokaryotes and even for 
partially degraded RNA. However, when tested on different bacterial 
monocultures, the effectiveness of this kit widely varied.7,8 Another fea-
ture of this kit is that the double-stranded cDNA can be further ampli-
fied by PCR, which allows sequencing from very low quantities of input 
RNA. However, this meantime may introduce biases well known to ex-
ponential amplification, therefore undermining quantitativeness. For 
example, when applied on a Burkholderia sp., the correlation of mRNA 
abundance between transcriptomes with and without rRNA removal, as 
indicated by R2, was only 0.51, much lower than 0.96 obtained by MI-
CROBExpress.8 In another evaluation, a total of five methods, including 
Ovation were tested.7 Subtractive hybridization kits achieved the high-
est fidelity (R2 = 0.90–0.97 for MICROBExpress, and R2 = 0.88–0.95 
for Ribo-Zero), followed by cDNA library normalization method dis-
cussed below (R2  =  0.13–0.98). Ovation obtained much lower fidelity 
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(R2 = 0.43–0.53), only higher than the mRNA-ONLY kit, for which R2 
was 0.04–0.42.

 cDNA LIBRARY NORMALIZATION

rRNA can also be eliminated after cDNA synthesis through cDNA li-
brary normalization, which had been previously used to “equalize” tran-
scripts in order to recover rare ones.36 Double-stranded cDNA is first 
denatured at an elevated temperature and then allowed to re-anneal at 
a lower temperature. Because the re-annealing rate of a cDNA is pro-
portional to the square of its concentration, cDNAs from abundant 
transcripts (mostly rRNA and tRNA) return to double-stranded forms 
faster than from less-abundant transcripts. The re-annealing is termi-
nated after an appropriate time period so that most rRNA-deriving 
cDNAs are in the double-stranded form, while cDNAs from mRNAs 
remain as single stranded. The double-stranded cDNA can then be re-
moved from single-stranded ones through enzymatic degradation with a 
duplex-specific nuclease (DSN)9 or through physical separation with hy-
droxyapatite chromatography.37 For example, applying cDNA library 
normalization with DSN on E. coli reduced rRNA representation in 
the total sequences from 94% to 26%, while preserving mRNA relative 
abundance, with only 10 most abundant mRNA transcripts exhibiting a 
small reduction after the DSN treatment.9 As the treatment occurs after 
cDNA library construction, the RNA input can be lowered to submicro-
gram quantities (e.g., 200–300 ng9,37).

However, the robustness of this method needs further investigation. 
As the re-annealing rate is concentration dependent, a fixed re-annealing 
time might not work for samples with varied concentrations of rRNA 
and mRNA, and this might partly explain the observed variation of 
rRNA removal efficiency among samples.9 Furthermore, variation is 
also associated with genome GC contents, as demonstrated by the ef-
ficient removal with high fidelity on the low- and medium-GC bacteria 
but failure on the high-GC bacterium tested.7 This suggested that the 
high GC fraction of mRNA may anneal faster or form hairpins, thus 
was also degraded by DSN, leading to its under representation.7 Anoth-
er adverse factor is the fact that within a transcriptome, mRNA abun-
dance differs by several orders of magnitude. Although facilitating the 
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detection of rare transcripts, the equalization on the contrary, reduces 
the dynamic range of mRNA abundance, and thus compromises quanti-
tativeness. The effectiveness and fidelity may become even more difficult 
to achieve for environmental samples with communities members dif-
fering in GC content and relative abundance. Conceivably, rRNA from 
low-abundance organisms and highly expressed mRNA from dominant 
organisms may be at the same concentration range, making it difficult to 
differentiate rRNA and mRNA.

 COMBINATION OF METHODS

Because of the limitation of each method, one method alone does not 
offer sufficient rRNA removal in some cases, particularly for challeng-
ing organisms or complex microbial communities. Therefore, researchers 
have tried combining different methodologies to improve mRNA enrich-
ment. For example, 59-monophosphate-dependent exonuclease diges-
tion followed by subtractive hybridization was applied to coastal water 
metatranscriptome samples, and it decreased rRNA sequences to 37% of 
total reads.38 When systematically evaluated, the combinations of these 
two methods provided more efficient rRNA removal than used alone, but 
produced much greater bias in mRNA abundance regardless of the order 
in which they were applied, and therefore should be avoided.6

In contrast to the increased bias by combining subtractive hybrid-
ization and exonuclease digestion, Peano et al.8 observed an interest-
ing phenomenon when combining hybridization and selective priming. 
When removing rRNA from a high GC Burkholderia sp., MICROBEx-
press alone, although offering a very high fidelity, was not efficient, while 
Ovation alone reduced rRNA to 61% of total reads, but introduced a 
significant bias in mRNA. Interestingly, applying MICROBExpress fol-
lowed by Ovation not only reduced rRNA to 54% of total reads but also 
significantly increased fidelity as compared to using Ovation alone, sug-
gesting that the application of MICROBExpress prior to Ovation made 
the latter less prone to bias.8 The mechanism for such bias reduction is 
unclear and needs further investigation for its wide application on high 
GC microorganisms.

In general, combination of methods might be able to improve 
rRNA removal efficiency in some cases, but the additional treatment 
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and purification procedures cause more material loss, and the extended 
sample processing time increases the risk of mRNA degradation, since 
mRNA is less stable than rRNA and tRNA. These factors need to be 
considered in method combination.

 CONCLUSIONS AND PERSPECTIVES

Progress has been made to remove rRNA from total RNA in microbial 
transcriptomic analysis. Each removal method has its own strengths and 
limitations. The choice of method depends not only on samples (e.g., GC 
content, genome complexity, phylogenic composition, and RNA quantity 
and quality) but also on applications, which may differ in the require-
ments for quantitativeness in mRNA abundance, uniformity in transcript 
coverage, representation of rare transcripts, etc. Among methods com-
pared so far, subtractive hybridization is the most widely used and gener-
ates the least bias. However, customized probes need to be synthesized 
if samples are not targeted by commercial probes, and its application is 
limited to samples with microgram quantities. Methods such as biased 
polyadenylation, selective priming, and cDNA library normalization are 
less limited by sample phylogenetic composition and are suitable for low-
quantity RNA, but need to be used with caution for potential biases. For 
low-yield environmental samples where the rRNA content is expected not 
as high as in fast-growing laboratory cultures, sequencing without rRNA 
removal might be a viable choice to avoid degradation of mRNA because 
of extensive sample processing. With further sequencing throughput in-
crease and cost drop, rRNA depletion may become less cost-effective and 
less beneficial, when considering the labor and potential biases introduced 
because of additional handling. For example, it was suggested that with 
current ultra-high throughputs such as from HiSeq 2000, rRNA depletion 
may not be necessary for analyzing single-species monocultures.39 Con-
ceivably, rRNA removal will become less crucial in performing RNA-Seq 
analysis of complex community samples in the future.

REFERENCES
 1. Moran MA. Metatranscriptomics: eavesdropping on complex microbial communities. Microbe 

2009;4(7):329–35. 

 2. Sorek R, Cossart P. Prokaryotic transcriptomics: a new view on regulation, physiology and 
pathogenicity. Nat Rev Genet 2010;11:9–16. 



52 Metagenomics for Microbiology

 3. Filiatrault MJ. Progress in prokaryotic transcriptomics. Curr Opin Microbiol 2011;14(5):579–86. 

 4. Neidhardt FC, Umbarger HE. Chemical Composition of Escherichia coli. 2nd ed. Washington, 
D.C.: ASM Press; 1996. 

 5. Karpinets TV, Greenwood DJ, Sams CE, Ammons JT. RNA: protein ratio of the unicellular 
organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular 
requirement of ribosomes for protein synthesis. BMC Biol 2006;4(1):30. 

 6. He S, Wurtzel O, Singh K, Froula JL, Yilmaz S, Tringe SG, et al. Validation of two ribosomal 
RNA removal methods for microbial metatranscriptomics. Nat Methods 2010;7(10):807–12. 

 7. Giannoukos G, Ciulla D, Huang K, Haas BJ, Izard J, Levin JZ, et al. Efficient and robust 
RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol 
2012;13:R23. 

 8. Peano C, Pietrelli A, Consolandi C, Rossi E, Petiti L, Tagliabue L, et al. An efficient rRNA 
removal method for RNA sequencing in GC-rich bacteria. Microbial Inform Experiment 
2013;3(1):1. 

 9. Yi H, Cho Y-J, Won S, Lee JE, Yu HJ, Kim S, et al. Duplex-specific nuclease efficiently removes 
rRNA for prokaryotic RNA-seq. Nucleic Acids Res 2011;39(20):e140. 

 10. Zhao J, Hyman L, Moore C. Formation of mRNA 39 ends in eukaryotes: mechanism, regu-
lation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 
1999;63(2):405–45. 

 11. Stewart FJ, Ottesen EA, DeLong EF. Development and quantitative analyses of a universal 
rRNA-subtraction protocol for microbial metatranscriptomics. ISME J 2010;4(7):896–907. 

 12. McGrath KC, Thomas-Hall SR, Cheng CT, Leo L, Alexa A, Schmidt S, et  al. Isolation 
and analysis of mRNA from environmental microbial communities. J Microbiol Methods 
2008;75(2):172–6. 

 13. Azarani A, Hecker KH. RNA chromatography under thermally denaturing conditions: analy-
sis and quality determination of RNA. Appl Note 2000;116:1–4. 

 14. Castro TLP, Seyffert N, Ramos RTJ, Barbosa S, Carvalho R, Pinto AC, et al. Ion Torrent-
based transcriptional assessment of a Corynebacterium pseudotuberculosis equi strain reveals 
denaturing high-performance liquid chromatography a promising rRNA depletion method. 
Microbial Biotechnol 2013;6(2):168–77. 

 15. Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R. A single-base resolution map of 
an archaeal transcriptome. Genome Res 2010;20(1):133–41. 

 16. Rauhut R, Klug G. mRNA degradation in bacteria. FEMS Microbiol Rev 1999;23(3):353–70. 

 17. Jiang X, Belasco JG. Catalytic activation of multimeric RNase E and RNase G by 59-mono-
phosphorylated RNA. Proc Natl Acad Sci USA 2004;101(25):9211–6. 

 18. Hausen P, Stein H, Ribonuclease H. An enzyme degrading the RNA moiety of DNA-RNA 
hybrids. Eur J Biochem/FEBS 1970;14(2):278–83. 

 19. Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, et al. Transcription 
profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA 
loci. J Bacteriol 2001;183(24):7341–53. 

 20. Pang X, Zhou DS, Song YJ, Pei D, Wang J, Guo Z, et al. Bacterial mRNA purification by 
magnetic capture-hybridization method. Microbiol Immunol 2004;48(2):91–6. 

 21. Shrestha PM, Kube M, Reinhardt R, Liesack W. Transcriptional activity of paddy soil bacte-
rial communities. Environ Microbiol 2009;11(4):960–70. 

 22. Sooknanan R, Pease J, Doyle K. Novel methods for rRNA removal and directional, ligation-
free RNA-seq library preparation. Nat Methods Appl Notes 2010;7(10). 



 Ribosomal RNA Removal Methods for Microbial Transcriptomics 53

 23. Robinson KA, Robb FT, Schreier HJ. Isolation of maltose-regulated genes from the hy-
perthermophilic archaeum, Pyrococcus furiosus, by subtractive hybridization. Gene 1994; 
148(1):137–41. 

 24. Su CL, Sordillo LM. A simple method to enrich mRNA from total prokaryotic RNA. Mol 
Biotechnol 1998;10(1):83–5. 

 25. Plum G, Clark-Curtiss JE. Induction of Mycobacterium avium gene expression following 
phagocytosis by human macrophages. Infect Immun 1994;62(2):476–83. 

 26. Li S-K, Zhou J-W, Yim AK-Y, Leung AKY, Tsui SKW, Chan TF, et al. Organism-Specific  
rRNA capture system for application in next-generation sequencing. PLoS One 2013;8(9):e74286. 

 27. Kukutla P, Steritz M, Xu J. Depletion of ribosomal RNA for mosquito gut metagenomic 
RNA-seq. JoVE (Journal of Visualized Experiments) 2013;(74):e50093. 

 28. Amara RR, Vijaya S. Specific polyadenylation and purification of total messenger RNA from 
Escherichia coli. Nucleic Acids Res 1997;25(17):3465–70. 

 29. Wendisch VF, Zimmer DP, Khodursky A, Peter B, Cozzarelli N, Kustu S. Isolation of Esch-
erichia coli mRNA and comparison of expression using mRNA and total RNA on DNA 
microarrays. Anal Biochem 2001;290(2):205–13. 

 30. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, et  al. 
Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 
2008;105(10):3805–10. 

 31. Wilhelm BT, Landry JR. RNA-Seq-quantitative measurement of expression through mas-
sively parallel RNA-sequencing. Methods 2009;48(3):249–57. 

 32. Gonzalez JM, Robb FT. Counterselection of prokaryotic ribosomal RNA during re-
verse transcription using non-random hexameric oligonucleotides. J Microbiol Methods 
2007;71(3):288–91. 

 33. Armour CD, Castle JC, Chen R, Babak T, Loerch P, Jackson S, et al. Digital transcriptome 
profiling using selective hexamer priming for cDNA synthesis. Nat Methods 2009;6(9):647–9. 

 34. Hirakawa H, Oda Y, Phattarasukol S, Armour CD, Castle JC, Raymond CK, et al. Activity of 
the Rhodopseudomonas palustris p-coumaroyl-homoserine lactone-responsive transcription 
factor RpaR. J Bacteriol 2011;193(10):2598–607. 

 35. Head SR, Komori HK, Hart GT, Shimashita J, Schaffer L, Salomon DR, et al. Method for 
improved Illumina sequencing library preparation using NuGEN Ovation RNA-Seq system. 
Biotechniques 2011;50(3):177–80. 

 36. Ko MSH. An “equalized cDNA library” by the reassociation of short double-stranded cD-
NAs. Nucleic Acids Res 1990;18(19):5705–11. 

 37. VanderNoot VA, Langevin SA, Solberg OD, Lane PD, Curtis DJ, Bent ZW, et al. cDNA nor-
malization by hydroxyapatite chromatography to enrich transcriptome diversity in RNA-seq 
applications. Biotechniques 2012;53(6):373. 

 38. Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA. Comparative day/night meta-
transcriptomic analysis of microbial communities in the North Pacific subtropical gyre. Envi-
ron Microbiol 2009;11(6):1358–75. 

 39. Haas B, Chin M, Nusbaum C, Birren B, Livny J. How deep is deep enough for RNA-Seq pro-
filing of bacterial transcriptomes? BMC Genomics 2012;13(1):734. 



Page left intentionally blank



CHAPTER

Metagenomics for Microbiology. http://dx.doi.org/10.1016/B978-0-12-410472-3.00004-X
Copyright © 2015 Elsevier Inc. All rights reserved.

4
High-Throughput Sequencing as a Tool 
for Exploring the Human Microbiome

Mathieu Almeida and Mihai Pop

 INTRODUCTION

The advent of massively parallel sequencing technologies has dramati-
cally broadened the scope of sequencing applications to new biological 
domains. In metagenomics, in particular, the combined DNA of entire 
microbial communities can now be sequenced effectively and cheaply, 
leading to the development of new analytical methodologies that lever-
age the new types of data being generated. It is important to note that 
analyses of whole-community DNA had already been performed long 
before the advent of new sequencing technologies, as evidenced by Ed 
de Long’s pioneering work in this field that identified bacterial rhodop-
sin in marine bacteria,1 and the first high-throughput explorations of 
acid mine drainage,2 ocean,3 and human distal gut4 microbial commu-
nities, all performed with the Sanger technology. The new sequencing 
technologies have simply enabled a much broader and cost-effective use 
of sequencing in these studies.

Here we will discuss the main issues related to the computational 
analysis of the resulting data. We will specifically focus on approaches 
that analyze the entire community DNA (commonly termed metage-
nomic experiments) in contrast to approaches that focus on specific genes 
within the community (usually, molecular community surveys based on 
targeted sequencing of the 16S rRNA gene).

Before we proceed, we would like to note that the promise of metage-
nomic studies is the ability to provide a glimpse at the majority of organ-
isms that cannot be readily grown in a laboratory. Even in heavily studied 
environments, such as the human intestinal tract, it is estimated that less 
than 30% of all microbes have been isolated.5 High-throughput sequenc-
ing provides a way to access the genomic content of the uncultured 
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members of the community. Note, however, that this view is distorted 
by the inability of current analytical tools to fully reconstruct genomes 
from the relatively short sequences currently generated (ranging from 
∼100 bp for Illumina to ∼500 bp for Roche/454 or IonTorrent), and 
even to untangle the multiple closely related genomes possibly found in 
an environmental mixture. Simply put, a metagenomic shotgun sequenc-
ing experiment loses a large part of the information contained in the 
genomic mixture, information that cannot be fully recovered through 
computational means. In addition, the sequencing data alone provide 
just hints into the biological functions of individual organisms or whole 
communities. In other words, the approaches we describe below and 
their results should be considered as just a first (and very important) 
step in our attempts to understand the structure and function of mi-
crobial communities. Rather than providing conclusive answers, these 
methods generate new hypotheses that will form the basis of future ex-
perimental studies.

Furthermore, an important emerging area of research is the incorpo-
ration of orthogonal types of data, such as gene or protein expression 
data, which are starting to be generated for metagenomic communities. 
Such methods are not discussed in our review as they are still in their 
infancy.

 ORGANIZING METAGENOMIC READS BY MAPPING 
ONTO REFERENCE GENOMES

Although we expect that many of the organisms found in an environ-
mental mixture have never been isolated and are thus absent from public 
databases, valuable insights can be obtained by comparing metagenomic 
sequences to currently available datasets. The reference provided by al-
ready sequenced genomes arguably provides the most reliable substrate 
for identifying the taxonomic origin of individual metagenomic reads 
and also enables the exploration of the genome structure of organisms 
closely related to previously sequenced genomes. The latter information 
is difficult to obtain from reads alone as will be detailed further. The value 
of reference genomes as a substrate for the analysis of metagenomic data 
is well recognized in the community, and has led to the initiation of ef-
forts aimed at sequencing the genomes of isolate organisms from culture  
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collections,6 as well as for extracting and sequencing organisms of inter-
est from environmental mixtures.7 It is important to note that the num-
ber of organisms already isolated but not yet sequenced is substantial, 
and sequencing these organisms is a valuable first step in constructing a 
relevant reference collection for metagenomic studies. Such efforts are, 
however, stymied by the complex and time-intensive procedures neces-
sary for submitting a genome sequence to public repositories – as a re-
sult, the increase in the number of publicly available bacterial genomes 
is far slower than would be expected given the dramatic improvements 
in sequencing technologies.

The use of reference genomes for the analysis of metagenomic data is 
further complicated by the sheer size of the data being analyzed. Thou-
sands of complete or nearly complete genomes are currently publicly 
available and we can expect this number to grow to tens or even hun-
dreds of thousands of genomes in the not too distant future. Current 
alignment algorithms, such as Bowtie,8 BWA,9 SOAP,10 and others, can-
not efficiently search such large collections. Furthermore, recent work 
on the development of new alignment tools specifically targeted at ge-
nome collections is primarily focused on human populations and cannot 
be easily extended to microbial collections. There is a critical need in the 
community for novel approaches that can search the massive reference 
databases that will soon be available.

Despite these limitations, reference genomes have been effective-
ly used in the analysis of metagenomic data. In a recent analysis of 
39 human fecal samples,11 metagenomic sequences (comprising data 
from a mixture of technologies) were mapped to a collection of 1506 
reference genomes in order to quantify the abundance of these genomes 
(or close relatives thereof) within the metagenomic samples. The result-
ing abundance matrices were used to compare and cluster the individual 
samples, analysis that revealed a broad stratification into three major 
clusters, termed enterotypes. This analysis also revealed that only ap-
proximately 40% of the reads could be mapped to reference genomes, as 
expected given the estimated fraction of gut microbes that have not yet 
been isolated.

In another recent example, sequences from 252 stool samples 
were mapped onto a collection of 1497 genomes in order to identify 
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individual-specific polymorphisms (focused on single-nucleotide poly-
morphisms) distinguishing the metagenomic organisms from their pre-
viously sequenced relatives.12 This study revealed that individual-specific 
variation patterns were stable over long periods of time in healthy 
individuals, suggesting that the microbial genotype of a person may rep-
resent an identifiable marker similar to the host genotype. Similar to the 
above-mentioned study, once again only 40% of the reads on average 
could be aligned to the reference genomes.

The alignment of metagenomic sequences to reference genomes can 
also provide insights into the specific adaptations of organisms in specif-
ic samples. For example, mapping sequences from a healthy oral micro-
biome against the sequenced genome of Actinomyces naeslundii, genome 
originally isolated from a diseased patient, revealed genomic differences 
possibly associated with pathogenicity, such as genes related to mercury 
resistance and drug transporters found in the potentially pathogenic 
Actinomyces strain but absent from the metagenomic samples.13

 TAXONOMIC CLASSIFICATION/BINNING

As described above, methods that rely on mapping reads to previously 
sequenced genomes fail to characterize large fractions of microbial pop-
ulations as many organisms have yet to be isolated and sequenced. Exist-
ing alignment algorithms can only discover very close relationships and 
can only be used to analyze the environmental organisms most closely 
related to genomes in public databases. More distant relationships can 
be inferred through the use of machine-learning techniques in a process 
called taxonomic binning or taxonomic classification. These tools at-
tempt to assign each read to a taxonomic “bin” generally approximating 
a broad taxonomic group such as a genus or a family. One of the earli-
est tools in this field, MEGAN,14 relied on simple blast searches (more 
sensitive than current short-read aligners) to identify matches against a 
database of sequences with known taxonomic origin. Other approach-
es focus on the k-mer (short DNA patterns, usually three to four base 
pairs in length) profiles of sequences that are matched, using machine-
learning techniques, against precomputed databases constructed from 
known genomes. DNA composition is broadly consistent across taxo-
nomic groups15 thus providing a useful classification signature even when 
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sequence similarity cannot be detected through alignment. Among such 
methods are tools based on self-organizing maps,16 interpolated Markov 
models – Phymmbl,17 naïve Bayes classifiers – NBC,18 and support vec-
tor machines – Phylopythia.19

Compositional-based approaches such as those described above can 
be stymied by genomic regions with unusual DNA compositions or lat-
eral gene transfer. These limitations can be addressed by focusing on just 
specific genes that are considered phylogenetically informative, that is, 
their composition correlates with the evolutionary history of the organ-
isms. Tools that leverage this information include Amphora,20 Metaphy-
ler,21 MetaPhlAn,22 and mOTU.23

 STRUCTURING METAGENOMIC SHORT READS INTO A GENE 
CATALOG BY DE NOVO ASSEMBLY

Knowledge of the broad taxonomic origin of metagenomic sequences 
is not sufficient for understanding the function of microbes within a 
community, as closely related genomes may differ in clinically relevant 
functions (e.g., differences between commensal and pathogenic Esch-
erichia coli strains). Furthermore, human gut communities were shown 
to exhibit relatively stable functional profiles despite highly divergent 
taxonomic compositions.24,25 Reconstructing genes and even genomes 
from metagenomic mixtures is an important first step toward a better 
characterization of their functional profile, although some analyses are 
possible even when starting with the reads alone.26

Genome assembly is a difficult task even for isolate genomes, and its 
difficulty is compounded in metagenomic samples for three main reasons: 
(i) low-abundance organisms cannot be effectively assembled because of 
lack of coverage; (ii) wide differences in abundance/coverage between 
community members makes it difficult to identify genomic repeats; and 
(iii) true differences between closely related organisms cannot be easily dis-
tinguished from sequencing errors. Despite these challenges, early metage-
nomic studies relied on assembly tools developed for isolate genomes such 
as Celera Assembler27 in the first gut microbiome4 or SOAPdeNovo28 in 
the MetaHit5 and Human Microbiome Project (HMP)29 studies.

Recently, a number of tools have been developed that target the 
specific characteristics of metagenomic data, including Meta-IDBA,30 
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Meta-Velvet,31 and integrated pipelines that include assembly as well as 
downstream analyses such as gene finding and taxonomic classification – 
MOCAT32 and MetAMOS.33

It is important to note that the ability to effectively sequence and 
reconstruct a substantial part of a complex microbial mixture is by no 
means obvious. Generating sufficient sequencing depth to ensure the 
data can be assembled might be prohibitively expensive, and even if  suf-
ficient data are generated, the data may not be easily analyzed computa-
tionally. The analysis of the data generate in the HMP revealed that, at 
least for fecal samples, these concerns are not warranted. Specifically, two 
lanes of paired-end reads from an Illumina GA2 instrument (currently 
equivalent to a single lane of an Illumina HiSeq experiment) suffice to 
reconstruct a substantial fraction of the gut microbiome, and the ad-
dition of sequencing depth does not significantly improve the quality 
of the reconstruction.25 In other host-associated communities, however, 
the high level of human DNA contamination dramatically reduces the 
effective sequencing depth available, highlighting the need for the de-
velopment of strategies for enriching the microbial component of the 
samples.25 In addition, highly complex communities, such as those found 
in soil, continue to present a significant analytical challenge.34

Although the goal of assembly is to reconstruct entire genomes, the 
output of metagenomic assemblers is highly fragmented and requires 
additional analyses to identify the sets of contigs that belong to a same 
genome. Compositional-based methods (such as those used for taxo-
nomic classification) and depth of coverage information can be used for 
this purpose,2 although more elaborate analyses of the data may require 
manual inspection of the assembly results, as performed, for example, in 
an analysis of the strain structure in a Citrobacter population within the 
developing gut microbial communities in infants.35

Because of the lack of contiguity and general complexity of assembled 
metagenomic data, most studies so far have focused on characterizing 
the genic content of the data rather than on the reconstruction of indi-
vidual organisms. Such analyses have revealed the tremendous diversity 
of genes harbored in microbial ecosystems: nonredundant gene cata-
logs comprised 6.1 million genes in an oceanic microbiome,36 3.3 million 
genes in the human gut data generated by the MetaHit project,5 and 
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5 million genes in the data generated by the HMP.29 These gene catalogs 
have dramatically expanded the known universe of genes – for example, 
the Global Ocean Survey data alone significantly exceeded the cumula-
tive size of the National Center for Biotechnology Information (NCBI) 
nonredundant database when this dataset was created.36 In the context 
of gut microbial communities, it appears that the above-mentioned gene 
catalogs capture a significant fraction of the collective functional con-
tent of gut microbiota across the human population: 90% of the genes 
identified in the MetaHit projects are also found in the HMP catalog, 
as well as within a similar catalog constructed from Chinese subjects.37

 CLUSTERING METAGENOMIC GENE CATALOGS

The sheer size of metagenomic gene catalogs (ranging in the millions 
of genes, as described above) makes it difficult to analyze and interpret 
the resulting data. A recently proposed solution involves the use of gene 
abundances across multiple samples (as estimated, e.g., by mapping 
metagenomic reads to the gene catalog) to identify genes with correlated 
abundance patterns.37,38 Genes with highly correlated abundance patterns 
can be inferred to originate from a same chromosome, thus allowing one 
to reconstruct virtual genome clusters. Note, however, that high correla-
tion can also be expected because of symbiotic or mutualistic interactions 
between environmental members, factor that can lead to the false aggre-
gation of genes from distinct organisms. On the contrary, variable genes, 
such as virulence cassettes or prophage regions, will not cluster with the 
organism containing them, making it difficult to use the gene clusters to 
study the specific adaptation of microbes to their environment.

Despite these limitations, such clusters of genes are increasingly used 
to organize metagenomic data and simplify their analysis and interpre-
tation as evidenced by recent studies associating microbiome composi-
tion with type II diabetes37 and obesity,39 or tracking the response of the 
host microbiome during dietary intervention.40

Gene clusters can also be used as a framework around which one can 
reconstruct metagenomic organisms, by iterative recruitment of metage-
nomic reads mapping to the genes within a cluster followed by the  
assembly of the resulting sequences.38 This approach, encoded in the Profile  
Augmented Metagenomic Assembly (PAMA) pipeline,38 has allowed 
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the reconstruction of draft genomes from 700 gene clusters. An impor-
tant question arises in this context, specifically the quality of the recon-
structed genomes. This issue is highly relevant to isolate genome as well 
and has been addressed extensively recently through assembly “bake-
offs”41,42 and the development of validation tools.43–46 In the context 
of microbiome studies, the HMP developed a collection of six quality 
criteria that consider the length and coverage of contigs and scaffolds, 
as well as the presence of essential functions within the reconstructed 
genomes.6 Other proposed measures of quality include the redundancy 
of genes/functions known to be unique in an organism.47 Among the 
700 genomes described above, 238 genomes passed such a strict set of 
quality criteria and were deposited into NCBI databases (they can be 
retrieved by the query “160767[top bioproject]”).

 ADVANCED METAGENOMIC ANALYSES

Most metagenomic studies described above primarily focused on exten-
sions of analytical methods developed for isolate genomes. The specific 
characteristics of metagenomic data, as well as the application of metage-
nomic methods to large collections of samples, make it possible to explore 
biological questions that cannot be studied in single cultured organisms. 
Among these are attempts to uncover the network of interactions between 
community members,48,49 the exploration of lateral gene transfer events,50 
and the study of the dynamic behavior of microbial ecosystems.51,52

A recent exciting development is also the utilization of microbial 
abundance across multiple samples as a proxy for phenotype, specifically 
in the context of clustering 16S rRNA gene sequences into operational 
taxonomic units,53 allowing for a more precise delineation of taxonomic 
groups than possible on the basis of sequence data alone.

 CONCLUSION

We have outlined above recent computational advances in the analysis 
of metagenomic data and demonstrated the use of such techniques in 
beginning to understand the role microbial organisms play in our health 
and our world. We hope that these results not only highlight the tremen-
dous promise metagenomic studies hold but also show the considerable 
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challenges that need to be overcome in order to fully fulfill this promise. 
These challenges are in part analytical – new computational approaches 
and tools need to be developed to fully leverage the information found 
in metagenomic data; but also logistical in nature, existing infrastruc-
tures are not able to cope with the rapid increase in biological knowl-
edge, both in terms of newly sequenced organisms and newly discovered 
genes. Overcoming these logistical challenges will require substantial co-
operation between researchers, funding agencies, and governments.

We would also like to point out that the promise of metagenomics to 
uncover and characterize novel, previously uncultured, organisms has 
yet to be fully realized. Initial forays in this direction have already un-
covered new organisms from previously unknown phyla54; however, they 
have also revealed the general difficulty of identifying and reconstruct-
ing such organisms. Adequate computational tools are simply not avail-
able to scientists interested in mining the data for new microbes.

Most of our discussion has focused on bacterial metagenomics; 
however, all the main concepts apply equally to viral populations. The 
challenges that have become apparent in the analysis of bacterial metage-
nomic data are only compounded in viral populations, particularly due 
to the absence of well-curated and comprehensive reference databases.

Finally, we would like to point out initial forays in understanding 
the metabolic functions within entire communities55 that, together with 
ecological modeling,56 may lead to the development of a computational 
modeling infrastructure for metagenomic studies, mirroring successes in 
this field in isolate genomes.57
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 INTRODUCTION

Cultivation-free metagenomic studies of  entire microbial communi-
ties (microbiomes) in the ocean, soil, and the human body have sig-
nificantly improved our understanding of  the role of  the microbiome 
in natural environments and in human health and disease.1–4 Sequenc-
ing the 16S ribosomal RNA (rRNA) gene is a popular cost-effective 
high-throughput technique5 to assess the diversity of  microbiomes, 
but shotgun sequencing of  the whole genomic content of  a communi-
ty (the metagenome) provides a much richer snapshot of  both the or-
ganismal composition and the metabolic potential of  the community.6 
With the cost of  high-throughput sequencing constantly decreasing, 
the number of  whole-metagenome shotgun (WMS) datasets is rap-
idly increasing producing an unprecedented opportunity to unravel 
the composition, diversity, and function of  these complex microbial 
communities.

Shotgun metagenomics produces extremely large datasets of short 
sequences that are very challenging to analyze. Recently, several com-
putational approaches have been proposed to explore WMS data from 
different, albeit complementary, viewpoints (e.g., the taxonomic compo-
sition, the metabolic potential, and the phylogenetic diversity) but the 
potential of this technology is yet to be fully realized. Here we specifi-
cally focus on the task of taxonomic profiling of microbial communities 
from WMS samples, discussing the strategies developed so far and the 
ongoing challenges in the field.
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 TAXONOMIC PROFILING WITH SHOTGUN METAGENOMICS

A WMS dataset6 consists of millions of short sequence reads (genomic 
fragments) ideally representing all the microbes populating the sampled 
environment (Figure 5.1A and B). Identifying the organisms present in 
the microbial community and their abundances is usually the first step to 
unravel the biology of such communities and this task is referred to as 
taxonomic profiling. More formally, taxonomic profiling is the computa-
tional operation of inferring that taxonomic clades are populating a giv-
en microbial community and in what proportions (relative abundances).

Fig. 5.1. A complete taxonomic profiling pipeline from sample collection to marker-based or assembly-based 
taxonomic profiling. (A) The DNA extracted and isolated from microbiome samples is sequenced by shotgun 
metagenomics that provides millions of short reads in each WMS sample. (B) A typical metagenomic dataset 
consists of sequenced samples in FastQ format (nucleotide sequence and corresponding quality scores47) and 
associated metadata. Using a (C) marker-based approach (e.g., MetaPhlAn42), short reads are mapped against 
representative and taxonomically informative genes. This results in species-level abundance profiles for each sample, 
which can then be merged and used for clustering or diversity analysis. (D) Short reads can alternatively first be 
assembled into longer contigs (e.g., with SOAPdenovo16) that are then placed into a phylogenetic tree (e.g., with 
PhyloPhlAn23) to explore the microbial diversity in each sample. Other profiling alternatives are discussed in the 
text, and a full step-by-step tutorial for the pipeline in panel (C) is available in the supplement of the article by 
Segata et al.6
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A common feature of taxonomic profiling approaches is that they 
all, to varying degrees, rely on reference databases (of sequenced organ-
isms) to assign taxonomic labels to the WMS sequences. This is neces-
sary as no a priori taxonomic information is provided by the sequence 
itself. The sheer size of both the metagenome and the reference databas-
es poses a major challenge to taxonomic profiling. For instance, single 
WMS samples from recent investigations1–3 comprise between 109 and 
1010 bases and the number of sequenced genomes in the public databases 
currently exceeds 15,000 (>40 Gb)7,8 and rapidly increasing. Pioneering 
taxonomic profiling approaches were based on mapping with BLAST9 
and each sequencing read was searched against each microbial genome 
to ascribe taxonomy (usually by the best-hit policy),10,11 but with cur-
rent WMS and reference genome datasets this approach is unfeasible 
even with very large computational resources. Other challenges include 
biases in the reference databases that are largely populated by genomes 
of cultivable and well-characterized organisms.7,8 Consequently, some 
portions of the tree of life are underrepresented. This lack of closely 
related reference genomes hampers the identification of phylogenetically 
conserved sequences as well as the assessment of the impact of horizon-
tal gene transfer events. In addition, WMS data analysis faces the same 
common issues as other high-throughput next-generation sequencing 
projects including the relatively short read length (currently between 
100 and 250 nucleotides) compared with traditional Sanger sequencing 
(∼1000 nucleotides) and the non-negligible erroneous base call rates on 
the entire sequencing dataset.

Current approaches for WMS taxonomic profiling can be grouped 
based on how directly they make use of reference genomes. These are 
Assembly, Compositional, Mapping, and Marker-based approaches. Each 
of these approaches is discussed in the proceeding sections. Schemes of 
the two most popular approaches, Marker based and Assembly based 
are given in Figure 5.1C and D, respectively.

 ASSEMBLY-BASED TAXONOMIC PROFILING OF MICROBIOME

To obtain a complete genomic snapshot of the environment sampled, 
the full-length genome sequence for each of the microbes present would 
need to be recovered. This is clearly idealistic, but by utilizing metage-
nomic de novo assembly techniques,12 WMS reads can be first assembled 
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into contigs, and at some instances, it is possible to reconstruct the ge-
nomes of the more dominant members of the community. After the ini-
tial assembly step, taxonomic or phylogenetic information is ascribed to 
each contig in a second step by sequence comparison to reference ge-
nomes. The scheme of assembly-based profiling is given in Figure 5.1D. 
For each of the two steps, several options are available and a few soft-
ware packages combine both in a unique integrated pipeline such as 
MetAMOS,13 MOCAT,14 and Ray Meta.15

Single-genome assembly tools such as SOAPdenovo16 have been di-
rectly applied on metagenomic data with varying degrees of success.1,3 
However, these tools are not optimized for metagenomic projects that 
consist of a mixture of genomes. Several metagenomic extensions have 
been developed to cope with metagenomic sequences including the com-
puter memory issues because of the size of WMS samples, and the risk of 
generating trans-organismal chimeric contigs or scaffolds.17 MetaVelvet18 
and Meta-IDBA19 are two popular de Bruijn-based metagenomic assem-
bly tools that work particularly well for the most abundant organisms in 
a WMS sample and high-quality assemblies have been obtained with ad 
hoc extensions of existing approaches.20,21 The taxonomic placement of 
the reconstructed contigs is frequently performed by sequence mapping 
against reference genomes. Although this manual curation strategy can be 
effective in some cases, more precise and automatic tools have been specif-
ically developed for this task including MetaPhyler22 and PhyloPhlAn.23 
These tools, in addition to taxonomic assignment, also provide a phy-
logenomic assessment of the contigs by placing them in the context 
of the microbial tree of life (Figure  5.1D). In particular, PhyloPhlAn 
utilizes the 400 most conserved proteins within the sequenced members 
of the microbial phylogeny to infer the phylogenetic placement of new 
genomes or metagenomically assembled contigs. It has been shown23 that 
even small contigs consisting of only 1% of the whole genome can be ac-
curately rooted in the microbial phylogeny and taxonomic assignments 
can then be automatically inferred and manually inspected.

Assembly-based approaches are particularly suitable for microbiomes 
that include a large proportion of previously unseen (unsequenced) mi-
crobes. For these metagenomes, which are only partially covered by refer-
ence genomes, the advantage of assembly-based approaches is that they 
rely on a more indirect use of reference genomes compared with other 
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profiling approaches that would miss the novel portions of the commu-
nity. In contrast, for environments such as the human body for which 
extensive efforts have been made to sequence genomes that are repre-
sentative of the overall microbial diversity,24 assembly-free taxonomic 
profiling approaches are usually able to better capture the sequences for 
low-abundance members of the community that are particularly chal-
lenging to assemble. Currently, metagenomic assembly remains an active 
area of research as closely related organisms, highly conserved DNA 
regions, and horizontal gene transfer pose significant challenges in ob-
taining accurate assemblies.

 COMPOSITIONAL APPROACHES  
FOR METAGENOMIC BINNING

Compositional approaches compare the intrinsic properties of sequenc-
es without being reliant on direct nucleotide or protein sequence align-
ment. Such intrinsic properties that are known to be good organismal 
signatures include variations in GC-content, codon usage bias, and the 
distribution of k-mers of variable length, with the latter being consid-
ered the most important compositional feature for comparison. In a 
compositional approach, the first step is to build a statistical model of 
species- or genus-specific intrinsic properties by preprocessing reference 
genomes (the so-called training step). The second step is applying this 
model to compare and classify the metagenomic reads. There are several 
different approaches to achieve these goals; for example, PhyloPythia/
PhyloPythiaS25 adopts a support vector machine classifier based on 
k-mer statistics. Different methods use other state-of-the-art machine-
learning tools and these include Phymm26 and NBC27 that are based on 
Bayesian models and TACOA,28 which adopts a k-nearest neighbor-
based strategy.

Because compositional approaches avoid the computationally ex-
pensive sequence alignment, they usually permit quick running times. 
Similarly to assembly-based approaches, they have high generalizing ca-
pabilities showing good properties in classifying reads without closely 
related reference sequences. This capability is because of the fact that in-
trinsic sequence information is evolutionarily more conserved than nu-
cleotide sequence homology. However, this ability comes at the expense 
of low discrimination power when closely related sequences are present 



72 Metagenomics for Microbiology

in the reference databases. For this reason, compositional taxonomic 
profiling is usually limited to genus-level resolution. Moreover, the low 
discriminatory power is further exacerbated by very short sequencing 
reads. Combining compositional with mapping-based approaches can 
mitigate both shortcomings.

 MAPPING-BASED RECRUITMENT OF METAGENOMIC READS

Mapping- or alignment-based methods categorize metagenomic 
reads based on sequence similarity with reference genomes. Currently, 
the most advanced tools are based on recent developments in DNA-
based read-to-genomes mapping tools that in comparison to the first-
generation BLAST-like tools are orders of magnitude faster, allowing 
millions of reads to be mapped against the human genomes in the or-
der of a few minutes. They utilize compact indices (such as those based 
on the Burrows–Wheeler transform) to efficiently identify limited sets 
of subsequences of the reference genome on which the full alignment 
is performed. Although some profiling approaches still use BLASTN9 
as a mapping engine,26,29 updating them to include these very fast algo-
rithms such as Bowtie2,30 SOAP2,31 or BWA32 is reasonably trivial. In 
some tools, the raw mapping is directly used as a proxy for the microbial 
community composition by naively assigning a taxonomic label to each 
metagenomic read based on the best hit. However, in the great majority 
of the cases, the raw output needs to be post-processed to resolve am-
biguities in the mapping caused by conserved genomic regions, multiple 
reference genomes in the database from the same taxonomic clade, or 
reads mapping to the donor genome of horizontally transferred regions. 
These ambiguously assigned reads can be typically labeled using the 
lowest common ancestor approach that categorizes reads into the lowest 
possible taxonomic clade that includes all significant hits as is imple-
mented in the web-based tools MG-RAST33 and MEGAN.34 More ad-
vanced phylogenetic-based tools are available35 and hybrid approaches 
integrating compositional and mapping-based strategies have also been 
proposed including PhymmBL26 that combines interpolated Markov 
models with sequence mapping, RITA29 that implements a cascade of 
direct and translated mapping and Naïve Bayes compositional classi-
fiers, and SPHINX36 that limits the search space with tetranucleotides 
frequencies followed by translated mapping. These hybrids combine the 
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computational performances and generalizability to high taxonomic 
level of compositional tools and the low taxonomic level (e.g., species) 
discriminability of mapping-based tools.

 MARKER-BASED TAXONOMIC PROFILING

A large fraction of the genomic information available in reference ge-
nomes for the purposes of taxonomic profiling is at best uninforma-
tive (e.g., conserved sequences across multiple taxa) and occasionally 
even misleading (e.g., horizontally transferred genes). Marker-based 
approaches preprocess reference genomes to remove redundant and 
nondiscriminating sequences and focus on the most taxonomically in-
formative markers (Figure 5.1C). As a consequence, this reduces the size 
of the reference genomes database and therefore decreases the compu-
tational requirements as the WMS samples are compared only against 
a fraction of each genome, the marker set. Two classes of markers have 
been exploited so far for taxonomic profiling: universal markers and 
clade-specific markers.

Universal markers are those sequences that: (i) are present in all mi-
crobes and (ii) possess variable regions that can be exploited as taxo-
nomic or phylogenetic tags. The 16S ribosomal gene is the most notable 
example of universal marker that has been used for decades for taxo-
nomic and phylogenetic investigation, and several cost-effective high-
throughput sequencing approaches now target the diversity of a subset 
of its nine hypervariable regions.5 The 16S rRNA gene is of course pres-
ent in WMS samples as well (making up ∼0.1% of the bacterial sequenc-
es) and it can, therefore, be used for taxonomic profiling with tools such 
as PhyloOTU.37 To improve the robustness of the 16S rRNA taxonomic 
signal, additional highly conserved genes can be used (e.g., hsp65 and 
rpoB38), and tools such as AMPHORA39 and MetaPhyler22 extend the 
set of universal markers further to several dozen including both bacteria 
and archaea genes thus improving the accuracy of the inferred com-
munity taxonomic profiles. PhyloPhlAn goes further by utilizing the 400 
quasi-universal markers (i.e., present in almost all sequenced genomes) 
to infer the phylogenetic placement of organisms in the microbiome 
after a partial assembly step as detailed in the corresponding section 
above. Universal markers thus exploit few universally conserved ge-
nomic sequences that are expected to be present in yet-to-be-sequenced 
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microbes, but cannot take advantage of nonubiquitous genes that con-
stitute the majority of the microbial genomes.

The nonubiquitous regions of microbial genomes can be exploited 
focusing on clade-specific marker genes that are uniquely present in each 
taxonomic clade (e.g., each species). These genes are defined as core 
genes40 within the given clade with no sequence similarity to any other 
gene outside the clade.41 They are thus unique fingerprints of each mi-
crobial clade and can discriminate closely related organisms with high 
accuracy by just checking their presence (or absence) in the metagenome. 
MetaPhlAn42 uses approximately 400,000 such clade-specific marker 
genes representing the whole tree-of-life to taxonomically characterize 
the organisms from WMS samples ensuring high accuracy, quantitative 
estimation, and subspecies resolution.43 These tools make the most ef-
ficient use of the available reference genomes and therefore these ap-
proaches have the greatest potential for the development of fast and 
accurate metagenomic profiling.

 PROFILING LARGE METAGENOMIC COHORTS: A CASE STUDY

Only a few large-scale metagenomic projects have utilized high-
throughput shotgun sequencing to study the human microbiome with 
respect to health and disease. The two research efforts that generated the 
highest amount of shotgun metagenomics data for the human intestine 
are the MetaHIT project,1 which focused on the gut microbiota of 124 
individuals including 25 with inflammatory bowel diseases (∼0.5 Tb), 
and a gut microbiota study of 345 Chinese type-2 diabetic patients and 
nondiabetic controls2 (∼1.5 Tb). In addition to the intestine, the Human 
Microbiome Project (HMP)3 extended the study of the human microbi-
ome to include 18 different body sites generating 3.5 Tb of sequences. 
With the cost of sequencing constantly decreasing, ongoing investiga-
tions will soon surpass these pioneering projects in terms of WMS data 
generated; thus, it is crucial to have taxonomic profiling tools able to 
accurately analyze WMS datasets in a computationally efficient manner.

As a case study, we present the taxonomic profiling of 656 WGS sam-
ples from the HMP dataset utilizing the analysis pipeline depicted in 
Figure 5.1C. MetaPhlAn42 was applied to the 3.5 Tb of data, processing 
it at an average speed of 20,000  reads/second/CPU. This corresponds 
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to approximately 454 CPU hours, which is roughly equivalent to 2 days 
using 10 processors in parallel. In Figure 5.2, species-level taxonomic 
profiles are given for each of the 656 samples. Only the 50 most abun-
dant species are shown in Figure 5.2 (complete profiles are available for 
download at http://www.hmpdacc.org/HMSMCP/). One of the findings 
is that the microbial-specific signature is stronger than the inter-patient 
variability for each body site. Only the microbiomes from the skin (retro-
auricular crease) and the anterior nares show a partially microbial over-
lapping. It is important to notice the inter-individual variability at the 

Fig. 5.2. Taxonomic profiles of human-associated shotgun sequencing microbiome samples from the Human 
Microbiome Project. In total, 656 metagenomic samples (Illumina 101 nt reads) from seven human body sites have 
been taxonomically characterized by MetaPhlAn (see Figure 5.1C) and the 50 most abundant species are shown. 
The samples are hierarchically clustered using the Bray–Curtis similarity and the species are grouped based on the 
correlation of their abundance patterns. The complete abundance matrix is available at http://www.hmpdacc.org/
HMSMCP/.
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species level, an observation that would be missed if  the profiling was 
limited to genus-level resolution. For example, several different Bacte-
roides species are common commensals of the gut, four different Lac-
tobacillus species can dominate the vaginal microbiome, and several 
Streptococcus species colonize the oral cavity. These differences appear 
to be specific and are likely to be functionally relevant.4

Altogether, this case study highlights the role of computational taxo-
nomic profiling from WMS samples and confirms the ability of avail-
able tools to provide a first taxonomic insight into human-associated 
microbiomes.

 CONCLUSIONS AND OUTLOOK

Shotgun metagenomics is becoming an indispensable experimental tool 
for microbiome studies, and many recent computational developments 
to taxonomically profile metagenomic samples are exploiting the rich-
ness of the generated data. Available approaches utilize different strat-
egies to reduce the challenges imposed by the size of WGS data, to 
generate profiles with high taxonomic resolution and to minimize false 
positives and false negatives. Although assembly-based methods usually 
have an advantage when exploring novel environments, they may miss 
low-abundance organisms in the microbiome, marker-based approaches 
preprocess the reference sequences to reduce their size and increase their 
discriminating power resulting in very fast and precise tools. Composi-
tional and alignment-based methods attempt to give a comprehensive 
view by assigning taxonomies to as many reads as possible, but their 
strategies differ in terms of efficiency and taxonomic resolution.

Taxonomic profiling relies on well-characterized reference genomes. 
The profiling accuracy is thus deeply influenced by how well the avail-
able reference genomes database covers the biodiversity in the metage-
nomic sample under investigation. Human-associated microbiomes and 
the gut microbiome, in particular, are well represented in the reference 
genomes database because of their important role in human health and 
disease.24 Novel approaches for genome sequencing and most notably 
single-cell sequencing is readdressing the bias and expanding the refer-
ence set for many diverse environments.44 Metagenomic taxonomic pro-
filing can thus take advantage from the richer set of genomes that is 
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quickly being generated, although there are computational challenges in 
using larger reference sequence set and this will likely become the limit-
ing factor.

Shotgun metagenomics also has the potential to identify non-bacterial 
members contributing to the biodiversity of microbial communities. 
For example, Achaea can be identified by all the tools discussed here 
whereas extensions for profiling the viral45 and micro-eukaryotic (e.g.,  
fungal46,47) diversity are currently only available in a few profiling meth-
ods. However, profiling of non-bacterial organisms has additional chal-
lenges because of the scarcity of available reference sequences and the 
lack of optimized DNA extraction protocols. Extending taxonomic 
profiling to include all domains of life, addressing issues of taxonomic 
resolution and computational efficiency are the most relevant challenges 
that novel computational methods for WMS analysis face, and so this 
field remains an active area of research. Effectively addressing these 
challenges will greatly contribute to better characterization and under-
standing of these complex microbial communities.
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 INTRODUCTION

Statistical hypothesis testing is well established in clinical trials and ba-
sic research for objectively deciding whether data from multiple groups 
come from the same or different distributions.1,2 The use of formal statis-
tical hypothesis testing will become more important in human microbi-
ome research3–5as this field moves from technical development and basic 
science discovery to translational medicine and environmental studies. 
To statistically test for differences across groups, a formal set of logical 
steps is always followed, which we define here for the general case. Once 
these steps are outlined, we will illustrate how they are applied to the 
microbiome data.

Formally, hypothesis testing is defined as a statistical procedure to de-
cide whether the data collected provides enough evidence to accept a null 
hypothesis (e.g., the data from groups that come from the same distribu-
tion) or to reject it in favor of an alternative hypothesis (e.g., they come 
from different distributions).1,2 For example, an investigator might be in-
terested in the comparison of the average heights of jockeys and basket-
ball players whose (hypothetical) distributions are shown in Figure 6.1. 
The histogram shows that the heights for these two populations are both 
(visually) normally distributed and that, as expected, the heights of the 
basketball players are more than those of the jockeys. To decide if  these 
two distributions are the same or different, the statistician formulates 
the problem into a hypothesis, decides on the statistical test (a t-test in 
this simple example), and applies a formula to calculate the P value.1

To design an experiment, an investigator determines how many 
samples are needed to have a specified level of power to correctly con-
clude that the groups are different. To do this, four questions must be 
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answered. First, what are the distributions that generate the data? In the 
example above, we believe that the heights of jockeys and basketball 
players are normally distributed with means and variances whose values 
are available from prior data. Second, how big of an effect size is being 
tested? As indicated in Figure 6.1, the distance between the two means is 
denoted as the effect size of  the hypothesis,2,6 and the further apart these 
two means are the larger the effect size is. It should be noted that the def-
inition of an effect size is specific to the type of data being analyzed. In 
the above case, it is simply the difference between the two means. A more 
complicated effect size, for example, is the hazard ratio comparing sur-
vival curves using a Cox proportional hazards model.1 Attention to how 
the effect size is defined and measured is important. Third, what is the 
test statistic that will be used to reject or not reject the null hypothesis? 
The above example clearly requires the use of the t-test,1 but issues such 
as symmetric distributions with wide tails would indicate that a Wil-
coxon test1 would be more appropriate if  the heights were not normally 
distributed. Fourth, what level of statistical performance is required? 
Generally accepted performance is P < 0.05 for significance with 80% 
power.6 These values can be changed that have direct impact on the sam-
ple size, as we will indicate in the text below. For example, the analyst 
may consider to use a lower level of significance (e.g., P < 0.01) when it 
is important to avoid incorrectly rejecting the null hypothesis, or to use 
a larger power (e.g., 90%) when it is important to avoid not rejecting  

Fig. 6.1. Example of histograms of the height distributions from Jockeys and basketball players.
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the null hypothesis when it should be rejected. Setting these parame-
ters are project specific and should involve discussion among the key 
researchers designing the experiment including the primary investigator 
and co-investigators, funding agency, and biostatistician.

The P value, power, effect size, and sample size are all completely inter-
related.6 If the P value and power are held constant, a larger (smaller) effect 
size results in a smaller (larger) sample size. Given that the P value and effect 
size are held constant, increasing (decreasing) the sample size increases (de-
creases) the power of the study. This indicates why it is important to specify 
all four of the parameters when designing an experiment.

The recipe presented here is repeated for any formal statistical hy-
pothesis test and design of an experiment for one, two, or multiple 
groups, whether univariate, multivariate, multiple univariate tests with 
adjustments for multiple testing, time series, or survival analyses. In the 
remaining of this chapter, we present three examples of hypothesis test-
ing for microbiome data: (1) compare the diversity measure of bacterial 
species present across groups; (2) compare the frequency of a taxon of 
interest across groups; and (3) compare the frequency of taxa across 
groups.

 METAGENOMIC DATA

In this chapter, the examples are comparisons of taxonomic-labeled 
metagenomic data as formatted in Table 6.1. The entries in the table are 
the number of sequence reads assigned to a particular taxon by sample 
designated Xik indicating the number of taxon “k” in subject “i.”. The 

Table 6.1 Basic Data Structure and Format of Metagenomic Samples to Perform 
Hypothesis Testing and Statistical Analysis

Sample

Taxa

#Reads/Sample1 2 … K

1 X11 X12 … X1K X1*

2 X21 X22 … X2K X2*

     

N XN1 XN2 … XNK XN*

#Reads/Taxon X*1 X*2 … X*K

⋮⋮⋮⋮⋮⋮
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total number of reads for each sample is denoted by the symbol Xi* and 
the total number of reads per taxon is denoted by the symbol X*k. While 
this notation may seem clumsy, it is a standard format used in statistics 
to describe data and calculations.

In experiments with multiple groups, the rows will be divided by 
group. For example, if  a two-group study was done, the first 10 rows 
might be samples from group 1 and the second 10 rows from group 2. In 
any case, the basic data structure is still as defined in Table 6.1.

One additional consideration involves the issue of  standardiza-
tion or normalization of  the data. Suppose we wish to analyze per-
centages of  each taxon within the samples. Algebraically, this in-
volves dividing the reads in each row by the total number of  reads 
for that row, and multiplying this by 100. For example, the percent 
of  taxon 1 in sample 1 is calculated as (X11/X1*) × 100. Since different 
investigators chose to transform their data differently (see, e.g., Leg-
endre and Legendre,7 and references therein), we will not provide an 
exhaustive list of  formula here, but do encourage the reader to care-
fully think about how they are changing their data. In the Dirichlet-
multinomial (DM) model (presented below),8 raw count data is used 
with no need for rarefaction (a popular data transformation among 
ecologist used to compare diversity indexes) that introduces loss of 
information and has been shown to increase false-positive errors.9 
The investigator should keep in mind that transforming data should 
be done based on solid theoretical foundation and for a specific pur-
pose such as variance stabilization.10

 COMPARE DIVERSITY ACROSS GROUPS

Our first microbiome example involves comparison of species diver-
sity across groups. The number and variety of individual taxa pres-
ent in a metagenomic sample can be summarized using an index 
measure (i.e., single number), such as the Shannon diversity index7 
H X X X X( ( ) log( )i ik i ik ii

K

* *1
∑=

=
) or species evenness7 (Ji  =  Hi/log(K) 

where Ki is the number of species present in subject i ), calculated for each 

sample. When an investigator is interested in seeing if  there is more di-
versity in one group versus another, these measures can form the basis 
of the hypothesis test, power, and sample size calculations. Depending 

(Hi=∑i=1K(Xik/Xi*)log(Xik/Xi*)
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on how these values are distributed and the number of groups, a stan-
dard t-test, analysis of variance, or corresponding nonparametric test 
can be used.1

To illustrate, we compare the Shannon diversity calculated on Ver-
vet monkeys from a study comparing the impact on the stool microbi-
ome of a typical American diet (TAD) versus a commercially available 
monkey feed (CHOW). For each of the 136 monkeys, the microbiome 
data, formatted as represented in Table 6.1, for each sample, was used 
to calculate the Shannon diversity for that monkey. The histograms in  
Figure 6.2 shows the percent of the 136 monkeys (Y axis) binned into 
Shannon diversity values (X axis) divided into two groups. Figure 6.2 
shows that TAD results in higher diversity since the histogram for this 
group is shifted to the right (higher diversity values) relative to the 
CHOW diet group. To test the null hypothesis of no difference in diversity,  

Fig. 6.2. Histograms of the Shannon diversity distributions computed on taxa composition data from the stool of  
a group of Vervet monkeys feeding Chow (upper panel) and another group feeding on typical american diet  
(TAD) (lower panel).
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a t-test was used resulting in P < 0.0001 (t = 9.4, df = 118.4) leading us 
to reject the null hypothesis of no difference in favor of the alternative 
that the Shannon diversities are different in the two groups. Note that 
the distributions are slightly skewed, so a Wilcoxon test was done giving 
P < 0.0001 leading to the same conclusion. Alternatively, a transforma-
tion to induce normality could be used (i.e., Box-Cox transformation7), 
although in this case, little change in the P value would result since the 
t-test is robust to non-normality.1

In experimental design, sample sizes are calculated to ensure ade-
quate power to detect a difference in groups based on pilot data. In this 
data, the mean and the standard deviation for the TAD group are 2.94 
and 0.288, respectively, and for the CHOW group are 2.41 and 0.359, re-
spectively. From this data, the effect size is simply the difference between 
the means (delta = 2.94 − 2.41), and calculating the power or sample 
size can be done in almost any statistical software package; for example, 
in R, we used power.t.test(n = 2:20, delta = 2.94 − 2.41, sd = sqrt(0.1)) 
to generate the data for Figure 6.3.

From this power calculation we see that a sample size of seven Vervet 
monkeys per group, randomly assigned to either TAD or CHOW, will 
result in 80% power to reject the null hypothesis than the Shannon diver-
sity is the same in the two groups.

 COMPARE A TAXON OF INTEREST ACROSS GROUPS

Consider now the problem of testing a single taxon specified a priori 
across groups. It is important to specify the taxon a priori to ensure that 
the researcher is not looking at the data to see which taxa seem most 
different, then running tests to prove that what they saw is real. Statis-
tically, testing data that has been looked at and selected based on ap-
parent differences will inflate the false-positive rate (i.e., rejects the null 
hypothesis when it should not be rejected too often).

When the investigator wants to compare the abundance of the taxon 
across groups, it is important to standardize the data to a common scale. 
For example, converting the abundance to the percentage of reads in 
the sample (by dividing the taxon count by the total number of reads 
times 100) scales the data to “the number of taxon per 100 reads.” Once 
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the taxon count is rescaled to a common value (e.g., percentage), it can 
be compared across groups in a similar way as was done for diversity 
measures. Note that problems may arise if  a large proportion of the per-
centages are between 0–20% and 80–100%, in which case an inverse sine 
transformation should be considered for variance stabilization.10 More 
complex modeling of the count data, such as negative-binomial regres-
sion, might also be considered to see if  taxon count is impacted by sub-
ject phenotype such as age, gender, and health status, but this is beyond 
the scope of this chapter.

To illustrate a second test of a single a priori specified taxon, consider 
the case where the investigator wants to compare whether the taxon is 
present at different rates across groups. The count data in Table 6.1 for 
a taxon would be transformed to 0 if  the taxon is absent in the sample 
or to 1 if  the taxon is present in the sample. With categorical data such 

Fig. 6.3. Power of the t-test as a function of the sample size per group for an effect size equal to 0.53, the difference 
between the average Shannon diversity index of the TAD and the Chow group.
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as this, a chi-square test is used. To illustrate, we compared the rate that 
Streptococcus appears in samples from the left retroauricular crease and 
the gastrointestinal tract from the Human Microbiome Project (HMP) 
data. Table  6.2 shows the distribution of these rates – 167 (92%) out 
of 181 left-retroauricular crease samples had Streptococcus, while 135 
(65%) out of 209 stool samples did. To test the null hypothesis that of no 
difference in the rates of occurrence across the groups, a chi-square test 
gave a P value < 0.0001 (X2 = 40.9, df = 2) leading us to reject the null 
hypothesis of no difference in favor of the alternative that the groups do 
have different rates of occurrence.

If  an investigator is interested in confirming these results in a second 
experiment, the sample size (needed to ensure adequate power) can be 
computed using Figure 6.4 as pilot data. To compute power for this ex-
ample, we first estimate the effect size. In the case of Shannon diversity 
above, the effect size was easily calculated as the difference in means. 
With categorical data, we do not use the difference in rates but require a 
different measure of effect size, such as Cramer’s Phi. Other measures of 
effect size such as the odds ratio or relative risk that might be of interest 
and selection from these alternatives is based on the goals of the inves-
tigator. Using the pilot data in Table 6.2, Cramer’s Phi = 0.324, and set-
ting the significance level at 0.05, a single function call in R (pwr.chisq.
test(w = 0.324, df = 1, N = 1:200, sig.level = 0.05)) gives the power for 
various sample sizes as shown in Figure 6.4. From this, it is determined 
that 31 samples are needed in each group to correctly reject the null hy-
pothesis with 80% power. For 90% power, approximately 45 samples per 
group are needed.

A comment about multiple testing – in practice, many investigators 
will compare each taxon across groups separately resulting in a mul-
tiple testing problem.2,11 To understand why this needs adjustment, 
it is necessary to understand what the P value means. If  in a testing 

Table 6.2 Distribution of the Streptococcus Rate Across Stool and  
Left-Retroauricular Crease Samples Obtained from the Human Microbiome Project

Body Site Presence Absence Total

Left crease 167 (92%) 14 (8%) 181

Stool 135 (65%) 74 (35%) 209
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situation the null hypothesis is true (i.e., the distributions of  the taxon 
across groups is the same), the P value tells us the probability that in 
our data, the observed difference across groups occurred strictly be-
cause of  chance. When we accept P ≤ 0.05, we are explicitly accepting 
that we are OK with a 5% chance of  saying that the groups are differ-
ent when they are not (i.e., known as a Type I error, rejecting the null 
hypothesis when the null hypothesis is true, or a false positive).

Consider now the case where two taxa are separately tested and we 
use a P ≤ 0.05 as the level of significance for each test. We might incor-
rectly conclude that taxon A is different across groups when it is not, 
or incorrectly conclude that taxon B is different across groups when it 
is not. However, we must also take into account the possibility that we 
incorrectly conclude that both A and B are different across groups when 

Fig. 6.4. Power of the chi-squared test as a function of the sample size per group for an effect size given by 
Cramer’s-Phi = 0.354, a measure of the difference between the rate of Streptococcus found in metagenomic 
samples from the left retroauricular crease and the gastrointestinal tract populations from the human microbiome 
project.
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they are not. The true Type I error in this case is easily calculated as 
1 – (1 – 0.05)2 = 0.0975 >> 0.05. So when the investigator thinks that  
their chance of committing a Type I error (making a false-positive 
 conclusion) is 5%, it is in fact 9.75%. For 10 separate comparisons  
(1 – (1 – 0.05)10 = 0.4013), this increases to a 40% chance of committing 
a Type I error.

Because of space limitations, we cannot fully explore this topic here 
but want the reader to understand the importance of protecting against 
this inflation in Type I error.12

 COMPARE THE FREQUENCY OF ALL TAXA ACROSS GROUPS

Although an investigator could approach the comparison of multiple 
taxa by comparing the abundances of each taxon across groups sepa-
rately adjusting for multiple comparisons as described above, this ap-
proach is generally less powerful than multivariate approaches as it does 
not take into account the interactions that exist between taxa. Multivari-
ate statistical methods were invented for exactly this type of problem.

A multivariate distribution that applies to metagenomic data, tak-
ing into accounts the interactions or correlations among the taxa, is 
the Dirichlet-Multinomial (DM) model of taxa counts.8,13,14 Parametric 
models, such as this, improve the analysis of data compared with non-
parametric approaches and generally simplify calculation of P values, 
sample sizes, power calculations, measures of error, and confidence in-
tervals. In addition, natural measures of effect size often are available 
from the parameters.

To illustrate, we present two analyses. The first compares the average 
taxa frequency across metagenomic samples from saliva and throat and 
formally tests the null hypothesis that these two microbiome popula-
tions are the same. Figure 6.5 shows the taxa frequency for the HMP 
samples for both groups at the order level. For example, Lactobacillales 
has an average abundance of approximately 40% in throat samples and 
approximately 18% in saliva samples. Using the test formula derived for 
the DM distribution, we calculated P = 0.038 (Xmc = 78.33, df = 11), 
indicating that the null hypothesis is rejected, and we conclude that the 
two groups have different proportions of these taxa.
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If  an investigator wanted to confirm these results in a second experi-
ment, the sample size (needed to ensure adequate power) can be com-
puted using Figure 6.5 as pilot data. To compute power for this example, 
we first need to compute the effect size. As mentioned previously, the 
definition of effect size varies for different types of data. For the Shan-
non diversity example, the effect size was the difference in means, while 
for the categorical data using chi-square statistics, it was a more compli-
cated calculation (i.e., Cramer’s Phi). For this problem, the effect size is, 
intuitively, a measure of the distance between the two lines in Figure 6.5, 
and is calculated as a modified Cramer’s Phi measure.8 The further apart 
the lines are the larger the effect size is, and as in all power calculations, 
the fewer samples that would be needed for a given level of power.

Performing power calculations for metagenomics data requires the 
R-package HMP: hypothesis testing and power calculations for com-
paring metagenomic samples15 developed by authors of this chapter.  

Fig. 6.5. Average taxa frequency computed across metagenomic samples from the saliva and throat populations 
obtained from the human microbiome project.
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To calculate power, the investigator estimates the DM parameters for 
each group (part of the R package), computes the effect size, sets the 
significance level (e.g., 5%), and specifies the number sequences that will 
be generated on average for each sample. In practice, we suggest that a 
range of sample sizes and depth of sequencing be specified to generate 
a table of power values as shown in Table 6.3. To compare the curves in 
Figure 6.5, the investigator should sequence seven samples per group to 
guarantee 90% power to correctly reject the null hypothesis. While pow-
er increases only slightly with more reads, it is often justified to do deep 
sequencing to increase the probability of finding rare taxa; however, this 
is outside the discussion of this chapter.

In the above example, the distributions were far apart (i.e., the lines in 
Figure 6.5 were far apart) with a calculated effect size equal to 0.27. In a 
second example, we use subgingival and supragingival plaque samples to 
show the impact of effect size on sample size and power. In this example, 
the effect size = 0.07 is a much smaller difference that is confirmed visu-
ally in Figure 6.6 where the lines are closer together. Table 6.4 shows the 
power analysis for this data using 1% and 5% significance levels where 
we see that about 25 samples per group will be needed to have approxi-
mately 90% power. Also note that as the significance level gets smaller 
(i.e., P ≤ 0.01 to reject the null hypothesis), the power decreases for the 
same number of samples.

A comment about using the wrong distribution – using an incor-
rect statistical model for data can often lead to incorrect results, and  

Table 6.3 Power Calculation as a Function of Number of Sequence Reads and Sample 
Size for the Comparison of the Average Taxa Frequency from the Throat and Saliva 
Populations Obtained from the Human Microbiome Project, Using 5% Significance 
Levels

Power
Dirichlet-Multinomial

Number of Sequence Reads

Number of Subjects 1000 5000 10,000

2 34.3% 37.9% 38.2%

5 75.8% 76.6% 77.2%

6 85% 86.6.% 87.1%

7 92.1% 92.7% 92.9%

8 96.1% 96.3% 96.5%
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therefore, care must be taken when designing a study. A natural first 
pass look at metagenomics count data might lead a statistician to con-
sider using a multinomial model to perform hypothesis testing, as well 
as power and sample size calculations. We and others have shown that 
the multinomial model is incorrect since it cannot capture the excess 
variability present in metagenomic data (technically, this is defined as 
overdispersion). Ignoring the overdispersion leads to designing studies 
with significantly lower power than the investigator believes. For exam-
ple, Table 6.5 shows the power estimated using the wrong multinomial 

Fig. 6.6. Average taxa frequency computed across metagenomic samples from the subgingival and supragingival 
plaque populations obtained from the human microbiome project.

Table 6.4 Power for Comparison of the Average Taxa Frequency from the Subgingiva 
and Supragingiva HMP Samples at 1% and 5% Significance Levels

Power

Alpha = 1% Alpha = 5%

Number of Sequence Reads Number of Sequence Reads

Number of 
Subjects 1000 5000 10,000 1000 5000 10,000

10 29.45% 29.83% 29.89% 52.79% 52.91% 53.20%

15 55.26% 56.16% 56.16% 77.10% 77.88% 77.98%

25 89.44% 90.03% 90.00% 96.80% 97.02% 97.13%

50 99.96% 99.98% 99.96% 99.99% 99.99% 99.99%
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distribution for comparing the saliva and throat data. This indicates two 
samples per group and 1000 sequences is sufficient to have >99.9% pow-
er, when in reality, using the correct DM model, this sample size has only 
34.3% power. Using the wrong distribution will result in significant in-
crease in deciding that the groups are not different when they are (Type 
II error or false negative).

 DISCUSSION AND FUTURE RESEARCH

This chapter has introduced power and sample size calculations and 
hypothesis testing for microbiome research. Our hope in writing this 
chapter is to encourage microbiome investigators to consider these sta-
tistical topics early in their design of experiments that will impact their 
ability to reach conclusions about their data. In particular, we focused 
on topics related to the data format of microbiome taxonomic sequence 
counts, the distribution of the data, effect size indicating how groups 
of microbiome samples differ from each other, and formal parametric 
statistical tests and power/sample size calculations. Examples for com-
paring diversity measures across groups using the t-test, the rates of oc-
currence of a taxon using the chi-square test, and the entire microbiome 
across groups using the multivariate DM distribution were presented. 
Short discussions were included about multiple testing adjustments 
(when each taxon is compared across groups separately) and the dan-
gers in designing and analyzing data using the wrong distribution. In 
each example, the null hypotheses was defined, P values were calculated 
to decide if  the null hypothesis should be accepted or rejected in favor of 
the alternative, and power/sample size calculations were performed for 
designing experiments.

Table 6.5 Comparison Between the Power of a Test Statistics Based on Multinomal 
and DM Models for Throat and Saliva HMP Samples Using 5% Significance Level

Power
Multinomial

Number of Sequence Reads
Dirichlet-Multinomial

Number of Sequence Reads

Number  
of Subjects 50 100 1000 2000 5000 1000 5000 10,000

2 >73.3% >96.7% >99.9% >99.9% >99.9% 34.3% 37.9% 38.2%

5 >99.9% >99.9% >99.9% >99.9% >99.9% 75.8% 76.6% 77.2%
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Many investigators chose to use multiple testing (i.e., compare one 
taxon at a time across groups) and adjust the P values using one of 
several different multiple testing adjustment strategies.16 This approach 
to data analysis has the advantage of allowing the investigator to ex-
amine individual taxa to learn how they may impact a phenotype. The 
shortcoming of this approach is that it ignores the interactions or cor-
relations among the taxa and treats them as independent that is not true 
for metagenomic data. When the investigator is interested in discovery, 
this approach may be sufficient for generating hypotheses for further 
research. However, as the microbiome moves out of the basic science 
discovery phase to clinical translational research, with eventual devel-
opment of biomarkers for disease and drug experiments under Food 
and Drug Administration guidelines, more formal statistics such as the 
multivariate DM test will almost surely be required.

In this chapter, because of space limitations, we have exclusively fo-
cused on parametric statistical testing and power calculations. However, 
other methods such as PERMANOVA17 and ANOSIM18 based on per-
mutation testing are frequently used, and tools for defining effect sizes 
and calculating power and sample size tables are available (see, e.g., Chen  
et al.19). For investigators preferring to use the nonparametric approach-
es, there is ample literature to guide them on their use.

As biostatisticians, we are particularly interested in developing and 
promoting the use of parametric models for analyzing biomedical data, 
since these almost always have better properties than corresponding 
nonparametric models. For example, parametric models are almost uni-
formly more efficient than nonparametric models, which mean that in 
cases where 100 samples are required for a nonparametric model, the 
parametric model will have the same power with significantly fewer sam-
ples leading to cost savings in experiments. With this in mind, there are 
two open problems to solve with the DM test. First, if  we conclude the 
groups are different and reject the null hypothesis, the question of which 
taxa are different arises. By rejecting the null hypothesis in a multivariate 
test, we are concluding that at least one taxon, and perhaps all taxa, are 
different across the groups. A post hoc test, analogous to those used in 
analysis of variance, will tell us which taxa are different. Second, many 
microbiome studies are longitudinal where samples are collected from 
the same subject at multiple times. This results in correlation of samples  
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within subjects that must be taken into account to obtain accurate  
P values and power/sample size estimates. A generalized DM distribu-
tion model20 can be used to solve this problem.
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Longitudinal Microbiome Data Analysis

Georg K. Gerber

 INTRODUCTION

The microbiome is inherently dynamic, driven by interactions among 
microbes, with the host, and with the environment. These complex dy-
namics begin at birth, as the infant is colonized with microbes,1–8 and 
continue in the healthy adult as microbial populations vary with hor-
monal cycles9 and a myriad of other host and environmental factors.10–13 
At any point in time, the microbiome can be dramatically altered, either 
transiently or long term, by diseases such as infections2,14 or medical in-
terventions such as antibiotics.15–17 Recent advances in high-throughput 
experimental technologies are enabling researchers to measure dynamic 
behaviors of the microbiota at unprecedented scale.

Longitudinal data fundamentally provide more information than 
end-point data because of two special features of time-series: (a) time 
imposes an inherent, irreversible ordering on samples, and (b) samples 
exhibit statistical dependencies that are a function of time. These fea-
tures of time-series data enable discovery of rich information about a 
system under study, including short- and long-term trends18 and even 
causal interactions among system variables.19 However, these features 
of time-series data also complicate analysis, necessitating the use of ap-
propriate computational techniques.

Naïve analysis or design of time-series experiments can lead to er-
roneous conclusions, as illustrated in Figure 7.1. Figure 7.1A demon-
strates how aggregation over time intervals can mask dynamic properties 
of data. Imagine that we are measuring diversity of a microbial ecosys-
tem over 50 days, with the ecosystem subjected to a perturbation on day 
25. If  we simply average the diversity values measured at time-points 
prior to the perturbation, and compare with the average of the values 
measured after the perturbation, we will find no significant difference, 
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despite the obvious opposite trends before and after the perturbation. 
Figure  7.1B illustrates how aggregation of individual time-series can 
mask differences in temporal patterns across individuals. Imagine that 
we have collected time-series data on the abundances of  bacterial spe-
cies or operational taxonomic units (OTUs) in the gut. Furthermore, 
imagine that we have data for four OTUs, in which OTUs 1 and 2 ex-
hibit very similar patterns over time, whereas OTUs 3 and 4 exhibit 
mutually similar patterns but opposite to those of  OTUs 1 and 2. If  
abundances of  OTUs are summed at each time-point, the time-series 
would appear flat, despite the obvious changes over time for individual 
OTUs. Finally, Figure 7.1C illustrates how temporal aliasing, a form of 
under-sampling, can make it impossible to detect relevant changes in an 
ecosystem. In this example, three OTUs oscillate in abundance at dif-
ferent frequencies. Sampling below the frequency of  oscillations (e.g., 
at 10-day intervals) makes it impossible to distinguish the dynamics of 
the OTUs.

The remainder of this chapter is organized as follows. We will first 
provide a set of case studies illustrating key scientific questions inves-
tigators are addressing with longitudinal microbiome analyses. Next, 
we will survey some computational techniques that have been used to 
analyze recent microbiome time-series datasets. Finally, we will con-
clude with a discussion of future directions in the field, including new 
types of longitudinal microbiome data that are becoming available, and  

Fig. 7.1. Examples illustrating potential pitfalls when analyzing time-series data. (A) Aggregation over time-
intervals can mask dynamic properties of data. In this example, ecological diversity measurements during the first 
half of the study have the same mean and standard deviation as those during the second half (dashed line shows 
mid-point of the study). (B) Aggregation of individual time-series can mask differences in temporal patterns 
across individuals. In this example, if the abundances of four species or OTUs are averaged at each time-point, the 
aggregated time-series appears flat. (C) Temporal aliasing, a form of under-sampling, can make it impossible to 
detect relevant changes in a system. In this example, three OTUs oscillate in abundance at different frequencies. 
Sampling below the frequency of oscillations (e.g., at 10-day intervals) makes it impossible to distinguish the 
dynamics of the OTUs.
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directions for development of novel time-series analysis techniques. 
Note that time-series analysis is a vast subject, and its application to 
microbiome studies is rapidly advancing. Thus, the goal of this chapter 
is to provide the reader with a set of motivating examples and a concep-
tual background to catalyze further interest and study.

 EXAMPLES

 Development of the Microbiome in Early Childhood
The womb is essentially microbiologically sterile, with establishment of 
an individual’s microbiome beginning at birth.1–8 Infants undergo a se-
ries of developmental changes that alter their anatomy, physiology, and 
immune responses over time. Additionally, children’s diets and environ-
mental exposures dramatically change during the first few years of life. 
All these changes impact the composition of the microbiota, which, in 
turn, affect host metabolic and other physiological capabilities. More-
over, there is evidence from animal models that the composition of the 
microbiota during certain “window” periods in early life can profoundly 
influence immune system development.20

 Example 1
Koenig et al.2 obtained 60 fecal samples from a single infant over a  
2.5-year period and used 16S ribosomal RNA (rRNA) gene sequencing 
to assess the microbiome. Additionally, shotgun metagenomic sequenc-
ing was performed on 12 of the samples. The phylogenetic diversity 
of the infant’s microbiome was found to gradually increase over time, 
whereas the relative abundance of major taxonomic groups in the micro-
biota abruptly changed, particularly when solid foods were introduced. 
Analysis of the shotgun metagenomic data showed differences in micro-
bial gene content between early samples, which were enriched for lactate 
utilization genes, and later time-points after the introduction of solid 
foods, which were enriched for genes associated with carbohydrate uti-
lization, vitamin biosynthesis, and xenobiotic degradation, particularly 
from organisms in the Bacteroidetes phylum.

 Example 2
Sharon et al.5 obtained shotgun metagenomic data on 11 fecal samples 
collected on post-natal days 15–24 from a premature infant delivered 
by Cesarean section at 26 weeks gestation. Using sequence binning and  
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genome assembly techniques that take into account temporal patterns 
of scaffold abundances, the investigators tracked variations over time 
at the levels of bacterial species and strains, and of bacteriophages. The 
relative abundances of three Staphylococcus epidermidis strains, differ-
ing in genes coding for resistance to antibiotics, heavy metals, and phage 
infection, were found to change over time. In addition, three bacterio-
phage types that infect S. epidermidis were identified, with the abundance 
of each bacteriophage type co-varying with a respective S. epidermidis 
strain. A novel Propionibacterium species was also identified, which was 
present late in the time-series and contained genes coding for inositol 
and sialic acid metabolism not present in Propionibacterium species seen 
early in the time course.

 Microbiome Variability Over Time in Healthy Adults
The microbiome does not become static after childhood. Healthy adults 
routinely engage in behaviors that can alter their microbiomes, includ-
ing eating different foods day to day12 and coming into contact with new 
reservoirs of commensal microbes through travel.13 Furthermore, both 
women and men experience hormonal cycling and other time-varying 
physiology that influence their microbiomes.9 Characterization of varia-
tions in the microbes of healthy adults over time can provide insights 
into the factors that drive temporal microbiome variability, as well as 
lay the foundation for discrimination of normal temporal microbiome 
variability from dysbiosis.

 Example 3
Caporaso et al.21 obtained fecal, oral, and skin samples from two 
healthy adults with a mean interval of  1.12 days between samples, for 
6 months in one subject and 15 months in the other. A total of  396 
time-points were sampled and microbiomes were assessed using 16S 
rRNA gene sequencing. Individuals’ microbes, in terms of  presence/
absence and abundance of  OTUs, were found to vary considerably 
across months, weeks, and even days. Many taxa persisted for multiple 
time-points, but few were present over the entire time-course. Howev-
er, microbiomes in different body sites or across individuals remained 
distinguishable, suggesting that microbial communities throughout 
the body change over time but maintain body site-specific and host-
specific distinctions.
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 Example 4
Gajer et al.9 obtained vaginal swabs twice weekly over a 16-week period 
from 32 healthy reproductive-age women and assessed their microbi-
omes using 16S rRNA gene sequencing. Five types of vaginal bacterial 
communities were identified, with most communities dominated by a 
particular Lactobacillus species. Changes in community type over time 
were found to be complex and individualized, but exhibited certain com-
monalities. For instance, communities dominated by L. gasseri rarely 
transitioned to other community types, whereas communities domi-
nated by L. crispatus often transitioned to communities dominated by 
L. iners. Increased variability in the vaginal microbiome was found to 
be associated with specific times in the menstrual cycle, bacterial com-
munity composition, and sexual activity. However, women in the study 
remained healthy despite changes in the variability of their vaginal mi-
crobiomes, suggesting that there is a substantial range of “normal” mi-
crobiome variability within and across the human population.

 Responses of the Microbiota to Perturbations
Infections2 and other illnesses, or intentional interventions such as an-
tibiotic therapies15 or dietary modifications22 can dramatically alter the 
microbiota. A key question is whether the microbiome recovers to its 
original state after the perturbation or ends up in a new state, and how 
quickly equilibration occurs. Knowledge of the effects of perturbations 
on the microbiome can help us to understand the robustness of healthy 
or dysbiotic microbiota to changes induced by environmental interac-
tions or medical interventions, and ultimately provide insights into how 
we can reshape the microbiome to benefit the host.

 Example 5
Dethlefsen and Relman15 obtained 52–56 stool samples from three 
healthy human subjects over a 10-month period during which each 
subject received 2 5-day courses of oral antibiotics. Composition of 
the microbiota was assessed using 16S rRNA gene sequencing. Micro-
bial diversity was seen to decline rapidly in all subjects within 3–4 days 
of initiating antibiotics, with microbial diversity generally recovering 
within a few days of ceasing antibiotics. Some commonalities were seen 
in post-antibiotic alterations to the microbiota of all subjects, such as 
decreases in abundances of OTUs in the family Ruminococcaceae and  
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Lachnospiraceae. However, alterations substantially varied across sub-
jects and between each antibiotic course in a single subject. Further-
more, although the composition of the gut microbiota was qualitatively 
observed to stabilize by the end of the experiment, it remained altered 
relative to its initial composition.

 Example 6
Wu et al.23 performed a controlled diet experiment, in which 10 human 
subjects were sequestered for 10  days in a hospital environment and 
randomized to receive either a high-fat/low-fiber or a low-fat/high-fiber 
diet. Stool samples were collected daily from the subjects, and the com-
position of the microbiota was assessed using 16S rRNA gene sequenc-
ing. Changes in overall microbial community structure were detected 
within 24 hours of initiating the controlled diet, although changes in 
abundances of taxa tended to be individualized and few commonalities 
were detected at this level of analysis across subjects.

 COMPUTATIONAL METHODS FOR ANALYZING MICROBIOME 
TIME-SERIES DATA

 Regression-Based Techniques
Long-term dependencies over time, or trends, can be modeled by re-
gressing a series of observations on time.18 That is, we can model a series 
of observations (dependent variables), such as relative abundances of an 
OTU over time or ecological diversity of the gut microbiota over time, 
as a function of time and other covariates (independent variables). Such 
models have been successfully applied to analyzing microbiome data, 
such as the study by Gajer et al.9 (Example 4), which used a regression 
model to evaluate the dependence of the human vaginal microbiome on 
time in the menstrual cycle and other covariates.

The regression of a series of observations Y on time can be expressed 
with the following general equation:

Y f t( ; )t tθ ε= + (1)

Here, Yt represents the value of the dependent variable at time-point 
t, f(t;u) is a function of time with parameter vector u, and εt is a ran-
dom error term (e.g., normally distributed noise). By specifying different 
functional forms for f(t;u), the general model can capture many types 

Yt=f(t;u)+εt
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of trends in time-series data. Practically, the input to such a regression 
model is a column of observed values (e.g., OTU abundances) and a 
column of the times at which the values were observed. A statistics soft-
ware package, such as R (Free Software) or Matlab (commercial soft-
ware from MathWorks, Natick, MA) can then be used to fit the model.

Figure 7.2A and B depicts a simple linear and a periodic or cyclical 
trend, respectively. If  the functional form for f(t;u) is unknown a priori, 
various approaches can be used. For instance, as shown in Figure 7.2B, 
f(t;u) can be expressed as a flexible spline,24,25 which consists of a se-
ries of low-degree polynomial segments defined piecewise but smoothly 
joined over the time-series; splines will fit data better than a single high-
degree polynomial function, which may dramatically under- or over-
shoot the data.

An alternative type of regression model, termed the autoregressive 
(AR) model, does not directly regress observations on time as in Equa-
tion 1, but instead regresses present observations on prior observations. 
Conceptually, AR models allow prediction of the future and capture 
the phenomenon of increasing uncertainty about events further in the 
future; in contrast, models that directly regress on time assume an equal 
ability to predict a variable at any time-point. For these reasons, AR 
models are extensively used to analyze complex, noisy data, particularly 
economic measurements such as stock prices.18 AR techniques have also 

Fig. 7.2. Regression models with time as the independent variable can capture trends in longitudinal data.  
(A) Example of a simple trend in ecological diversity over time (x’s joined with a thin line) fit with a linear 
regression model (thick solid line). (B) Example of a cyclical trend of ecological diversity over time (x’s joined 
with a thin line depict data, thick solid line depicts actual trend) fit with a polynomial of degree 10 (“poly10,” 
dashed line) or a spline (dot-dashed line).
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been used in several microbiota studies, such as Palmer et al.,3 who used 
these techniques to assess the tendency of different taxonomic groups 
of bacteria to persist once established during colonization of the gut 
during childhood.

A general formula for an AR model is:

Y Yt i t i t
i

p

1

∑θ ε= +−
= 

(2)

This equation specifies an autoregressive model of order p, denoted 
AR(p), meaning that the data at time t depends on p prior data points. 
As in Equation 1, Yt represents the value of the variable of interest at 
time-point t, for example, the relative abundance of a particular OTU. 
The right-hand side of Equation 2, however, differs from that of Equa-
tion 1, in that time is not explicitly represented. Rather, time is captured 
by the past values of the variable of interest.

Figure 7.3A and C depicts data simulated from example AR models. 
In an AR(1) model (Figure  7.3A), the signal at adjacent time-points 
tends to be quite similar, but these similarities rapidly dissipate over time. 
An AR(20) model (Figure 7.3C), in contrast, exhibits long-term depen-
dencies or trends over time. Autocorrelation analyses (Figure 7.3B and 
D), which involve calculating the correlation between a time-series (e.g., 
series of relative abundances of an OTU) and a lagged version of itself  
at various lags, provide a quick means to explore the order of AR model 
needed to capture the dependencies present in a time-series. Statistics 
software packages, such as R and Matlab, provide various functions for 
readily fitting AR models and performing autocorrelation analyses and 
visualizations.

 State-Space Models
Probabilistic state-space models assume that the outputs or measure-
ments of a system depend on its state, which can change over time. 
In some cases, a system’s state may directly correspond to observable 
quantities such as its temperature. However, in many cases, a system’s 
state cannot be directly observed, and must be inferred from its outputs. 
State-space models are particularly useful for detecting when a system 
undergoes a substantial shift. Additionally, these models are useful for 

Yt=∑i=1puiYt−i+εt
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analyzing multiple variables over time, because the underlying state of a 
system can simultaneously drive the behavior of many variables.

Gajer et al.9 (Example 4) informally used a state-space model-like ap-
proach to analyze human vaginal microbiome time-series data. Different 
representative microbial community compositions were identified in a 
preprocessing step, and these compositions were defined as the underly-
ing system states. It was then determined which of the predefined states 
was most similar to a subject’s microbiota at each time-point sampled, 
and the frequency of transitions between states was analyzed.

A widely used formal state-space model is the hidden Markov model 
(HMM),26 which assumes that a system is in a discrete state at any given 
time and the system may probabilistically change state at each discrete 
time-step. States are “hidden” in the sense that they are not directly  

Fig. 7.3. Autoregressive (AR) models can capture dependencies in longitudinal data at varying time-scales.  
(A) Example of an AR(1) (order 1) model for ecological diversity. (B) Autocorrelation plot for the AR(1) 
model, showing exponential decay of correlations between measurements over time. (C) Example of an AR(20) 
(order 20) model for ecological diversity. (D) Autocorrelation plot for the AR(20) model, showing long-term 
periodic correlations between measurements.
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observed but can be inferred from data using efficient algorithms. The 
order p of  an HMM denotes the number of past states that the present 
state depends on. The number of states must be prespecified for stan-
dard HMM models, although nonparametric Bayesian HMMs have 
been developed that can infer the number of states from the data.27

Figure  7.4 provides an example of a five-state HMM of order 1. 
States are depicted as circles. The numbers next to arrows indicate the 
probability of transitioning between states at each time-step. For in-
stance, there is a 3% probability of transitioning from state 1 to state 2 
at each time-step. Figure 7.4B illustrates a trajectory, or series of states, 

Fig. 7.4. Hidden Markov Models (HMMs) can capture shifts over time in the underlying state of a system. 
(A) Example of an order one HMM with five states. Circles denote states and labeled arrows indicate transition 
probabilities. The observation model is not shown. (B) A trajectory of states simulated from the HMM. (C) Data 
simulated for four OTUs from the trajectory of states in panel (B).
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simulated from the example HMM. These states would not be directly 
observed. Instead, as shown in Figure 7.4C, we might have data consist-
ing of a time-series of relative abundances of OTUs. The microbial com-
munity composition corresponding to each state, the transition prob-
abilities between states, and the state at each time-step could then be 
inferred from the available time-series data.

 Temporal Pattern Clustering
Groups of microbial species have been observed to exhibit similar pat-
terns of changes in relative abundance over time within complex host–
microbial ecosystems.28 These groups or clusters may be comprised of 
organisms with similar metabolic or other functional capabilities, or or-
ganisms that are physically proximate in microenvironments within the 
host. The number of such clusters within the microbiota of different 
individuals or within the same individual subjected to different pertur-
bations can inform us as to the repertoire of responses available within 
a microbiome. Computational methods that cluster data often require 
the user to prespecify the number of clusters. However, in many cases, 
including for most microbiome applications, the number of clusters 
present in data is unknown a priori. Thus, automated and statistically 
principled clustering methods are crucial for these applications.

For example, we developed the Microbiome Counts Trajectories Infinite 
Mixture Model Engine (MC-TIMME),28 a time-series clustering algorithm 
specifically tailored for analyzing microbiome data that automatically in-
fers the number of temporal patterns from the data. MC-TIMME uses a 
nonparametric Bayesian technique, the Dirichlet Process,29 which assumes 
that the data arise from an unlimited (infinite) mixture of continuous-time 
temporal patterns. Using approximate inference methods, the fully Bayes-
ian MC-TIMME algorithm estimates the distribution over model variables, 
including the number of nonempty mixture components. MC-TIMME thus 
provides “error bars” (measures of uncertainty) over all variables, including 
the number of clusters/temporal patterns and the shape of each temporal 
pattern. Additionally, MC-TIMME provides more accurate estimates of in-
dividual temporal patterns, by aggregating information across multiple time-
series exhibiting similar patterns.

In a proof-of-principle application, we re-analyzed the antibiotic 
perturbation data from Dethlefsen and Relman15 (Example 6) using 
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MC-TIMME and established several new results. We introduced a new 
measure, called signature diversity, that quantifies the number of dif-
ferent temporal patterns in a perturbed host–microbial ecosystem and 
demonstrates marked similarities in signature diversity across subjects 
despite differences in standard measures of ecological diversity or mi-
crobial community composition. In addition, our continuous-time mod-
el of temporal patterns allowed us to accurately quantitate the time for 
individual OTU’s relative abundances to equilibrate after antibiotic ex-
posure and showed that OTUs generally equilibrated more quickly after 
the second antibiotic exposure. MC-TIMME also allowed us to infer 
Consensus Signature Groups (CSGs) or sets of OTUs exhibiting similar 
temporal patterns. By ordering the CSGs by how quickly their compo-
nent OTUs equilibrated after the first antibiotic exposure, we found a 
timeline of successive changes subsequent to antibiotic exposure in sub-
communities of microorganisms in the human gut, with CSGs having 
different taxonomic compositions with distinct physiologic capabilities 
such as acetate or butyrate production.

 Automated Experimental Design
Principled experimental design is particularly important for longitudinal 
studies. As illustrated in Figure 7.1C, under-sampling in a longitudinal 
study, on one hand, can make important changes in the system unde-
tectable. On the other hand, oversampling can be prohibitively expen-
sive or logistically impractical, particularly when human subjects are 
involved. Often, the frequency at which changes may occur in a complex 
host–microbial ecosystem over time is unknown. In these cases, pilot 
experiments, with frequent sampling, will need to be performed to col-
lect preliminary data on which to base an experimental design to study 
a larger cohort.

We developed an automated experimental design technique for longi-
tudinal microbiome studies in tandem with the MC-TIMME28 algorithm 
described above. Our technique formulates the experimental design task 
as an information theoretic optimization problem,30 in which the ob-
jective function to be optimized is the expected information gain (or 
reduction in entropy) achieved over all possible observations at a set of 
time-points. Data from a pilot experiment is used to estimate the distri-
bution over possible observations in future experiments. In general, our 
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method will favor experimental designs that sample at time-points with 
the greatest uncertainty or when the system under study is predicted to 
change most rapidly. In a proof-of-principle demonstration, we applied 
our method to data collected by Dethlefsen and Relman15 (Example 6), 
measuring changes in the microbiota of human subjects given pulses of 
oral antibiotics. Our method generated an optimal experimental design 
that agreed with the original design at many time-points. However, the 
optimal design had some notable differences, such as denser sampling 
for approximately 2 weeks after the first antibiotic exposure, which was 
consistent with our analyses demonstrating that some groups of OTUs 
took considerably longer than others to reach equilibrium abundances 
after the first antibiotic exposure.

 CONCLUSION

In this chapter, we introduced the topic of longitudinal microbiome 
data analysis through examples of studies from the literature and a brief  
overview of some important computational techniques. The microbiome 
field is rapidly advancing, as new technologies become available and in-
vestigators creatively apply these technologies to address basic scientific 
or clinically relevant questions. Example studies covered in this chapter 
focused on analyzing abundances of microbes or the gene content of 
microbial communities over time, using marker gene or shotgun metage-
nomics sequencing strategies. Studies measuring functional properties 
of the microbiota over time,16 such as transcriptomes, metabolomes, and 
proteomes, hold great promise. Another important emerging focus in 
the field are studies that prospectively analyze the microbiota of human 
subjects at risk for developing a disease.6,22,31 The field is also moving 
beyond assaying only bacterial populations to examining populations 
of other microorganisms including viruses,32 which exhibit astounding 
genetic plasticity over time.

To date, few computational tools have been developed that are spe-
cially tailored for analyzing microbiome time-series data. Special prop-
erties of these data include their discrete nature (counts), high levels of 
noise, large numbers of variables with dependencies due to phylogenetic 
and functional relationships, and complex dynamics due to multiple 
types of interactions including microbe–microbe, host–microbe, and  
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environment–microbe relationships. There is a tremendous practical 
need for new computational techniques that appropriately model these 
properties, and moreover, development of such techniques will un-
doubtedly provide the impetus for new, broadly applicable theoretical 
advances in computer science, statistics, and mathematics.

REFERENCES
 1. de Muinck EJ, Lagesen K, Afset JE, et al. Comparisons of infant Escherichia coli isolates link 

genomic profiles with adaptation to the ecological niche. BMC Genomics 2013;14(1):81. 

 2. Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing 
infant gut microbiome. Proc Natl Acad Sci USA 2011;108(Suppl):4578–85. 

 3. Palmer C, Bik EM, DiGiulio DB, Relman Da, Brown PO. Development of the human infant 
intestinal microbiota. PLoS Biol 2007;5:e177. 

 4. Schloss PD, Schubert AM, Zackular JP, Iverson KD, Young VB, Petrosino JF. Stabilization of 
the murine gut microbiome following weaning. Gut Microbes 2012;3(4):383–93. 

 5. Sharon I, Morowitz MJ, Thomas BC, Costello EK, Relman DA, Banfield JF. Time series com-
munity genomics analysis reveals rapid shifts in bacterial species, strains, and phage during 
infant gut colonization. Genome Res 2013;23(1):111–20. 

 6. Stewart CJ, Marrs EC, Nelson A, et al. Development of the preterm gut microbiome in twins 
at risk of necrotising enterocolitis and sepsis. PLoS One 2013;8(8):e73465. 

 7. Trosvik P, Stenseth NC, Rudi K. Convergent temporal dynamics of the human infant gut 
microbiota. ISME J 2010;4(2):151–8. 

 8. White RA, Bjornholt JV, Baird DD, et  al. Novel developmental analyses identify longi-
tudinal patterns of early gut microbiota that affect infant growth. PLoS Comput Biol 
2013;9(5):e1003042. 

 9. Gajer P, Brotman RM, Bai G, et al. Temporal dynamics of the human vaginal microbiota. Sci 
Transl Med 2012;4(132):132ra52. 

 10. Claesson MJ, Cusack S, O’Sullivan O, et al. Composition, variability, and temporal stability of 
the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 2011;108(Suppl 1):4586–91. 

 11. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean 
twins. Nature 2009;457:480–4. 

 12. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the 
human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl 
Med 2009;1(6). 6ra14. 

 13. Yatsunenko T, Rey FE, Manary MJ, et  al. Human gut microbiome viewed across age and 
geography. Nature 2012;486:222–7. 

 14. Hoffmann C, Hill DA, Minkah N, et al. Community-wide response of the gut microbiota to 
enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect Immun 
2009;77(10):4668–78. 

 15. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the hu-
man distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA 
2011;108(Suppl 1):4554–61. 

 16. Perez-Cobas AE, Gosalbes MJ, Friedrichs A, et al. Gut microbiota disturbance during antibi-
otic therapy: a multi-omic approach. Gut 2012;62(11):1591–601. 



 Longitudinal Microbiome Data Analysis 111

 17. Peterfreund GL, Vandivier LE, Sinha R, et al. Succession in the gut microbiome following 
antibiotic and antibody therapies for Clostridium difficile. PLoS One 2012;7(10):e46966. 

 18. Wei WWS. Time series analysis: univariate and multivariate methods. 2nd ed. New Jersey: 
Pearson; 2005. 

 19. Sugihara G, May R, Ye H, et  al. Detecting causality in complex ecosystems. Science 
2012;338(6106):496–500. 

 20. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the im-
mune system. Science 2012;336:1268–73. 

 21. Caporaso JG, Lauber CL, Costello EK, et al. Moving pictures of the human microbiome. 
Genome Biol 2011;12(5):R50. 

 22. Smith MI, Yatsunenko T, Manary MJ, et al. Gut microbiomes of Malawian twin pairs discor-
dant for kwashiorkor. Science 2013;339(6119):548–54. 

 23. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial 
enterotypes. Science 2011;334(6052):105–8. 

 24. Bar-Joseph Z, Gerber G, Simon I, Gifford DK, Jaakkola TS. Comparing the continuous rep-
resentation of time-series expression profiles to identify differentially expressed genes. Proc 
Natl Acad Sci USA 2003;100(18):10146–51. 

 25. Eilers PHC, Marx BD. Flexible smoothing with B-splines and penalties. Statist Sci 
1996;11:89–121. 

 26. Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recogni-
tion. Proc IEEE 1989;77:257–86. 

 27. Fox EB, Sudderth EB, Jordan MI, Willsky AS. A sticky HDP-HMM with application to 
speaker diarization. Ann Appl Statist 2011;5(2A):1020–56. 

 28. Gerber GK, Onderdonk AB, Bry L. Inferring dynamic signatures of microbes in complex host 
ecosystems. PLoS Comput Biol 2012;8(8):e1002624. 

 29. Rasmussen C. The Infinite Gaussian Mixture Model. Advances in neural information process-
ing systems (NIPS). Cambridge, MA: MIT Press; 2000. pp. 554–560. 

 30. Lindley DV. On a measure of the information provided by an experiment. Ann Math Statist 
1956;27(4):986–1005. 

 31. Jenq RR, Ubeda C, Taur Y, et al. Regulation of intestinal inflammation by microbiota follow-
ing allogeneic bone marrow transplantation. J Exp Med 2012;209(5):903–11. 

 32. Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD. Rapid evolution of the 
human gut virome. Proc Natl Acad Sci USA 2013;110(30):12450–5. 



Page left intentionally blank



CHAPTER

Metagenomics for Microbiology. http://dx.doi.org/10.1016/B978-0-12-410472-3.00008-7
Copyright © 2015 Elsevier Inc. All rights reserved.

8
Metagenomics for Bacteriology

Erika del Castillo and Jacques Izard

The study of bacteria, or bacteriology, has gone through transforma-
tive waves since its inception in the 1600s. It all started by the visualiza-
tion of bacteria using light microscopy by Antonie van Leeuwenhoek, 
when he first described “animalcules.” Direct cellular observation then 
evolved into utilizing different wavelengths on novel platforms such as 
electron, fluorescence, and even near-infrared microscopy. Understand-
ing the link between microbes and disease (pathogenicity) began with 
the ability to isolate and cultivate organisms through aseptic methodolo-
gies starting in the 1700s. These techniques became more prevalent in 
the following centuries with the work of famous scientists such as Louis 
Pasteur and Robert Koch, and many others since then. The relationship 
between bacteria and the host’s immune system was first inferred in the 
1800s, and to date is continuing to unveil its mysteries. During the last 
century, researchers initiated the era of molecular genetics. The discov-
ery of the first-generation sequencing technology, the Sanger method, 
and, later, the polymerase chain reaction technology propelled the mo-
lecular genetics field by exponentially expanding the knowledge of rela-
tionship between gene structure and function. The rise of commercially 
available next-generation sequencing methodologies, in the beginning of 
this century, is drastically allowing larger amount of information to be 
acquired, in a manner open to the democratization of the approach.

 HEALTHY HOSTS AND MICROBIOMES

Cooperation and association, in their broadest meanings, are ubiquitous 
and part of the evolutionary processes between bacteria and host. This 
mutually beneficial association has sustained coevolution through dif-
ferent habitats.

Microbiota–host cooperation starts from the moment development be-
gins in the environment outside of the genetic progenitors, for example, the 
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microbiota changes from postlarvae stage to the adult stage in an oyster, 
throughout the different stages of metamorphosis for the frog, and from 
birth to adulthood for mammals.1–4 Interestingly, it seems that individual-
specific strains, when established, are stable in an environment even if their 
relative abundance changes over time.5,6

To redefine the concept of health, the Human Microbiome Project 
(HMP) consortium recruited subjects without sign of proinflammatory 
condition or disease.7,8 The studies from the acquired metagenomic data 
sets, from multiple body sites, show that diversity of microbes is key 
to health.7,8 Other studies have shown that the microbiome influences a 
wide spectrum of biological events including the immune function and 
behavior of the host.9–12

Our life expectancy has drastically improved in the last 100 years. 
The impact of these changes on the ancestral mutualistic relationships 
between humans and microbes has to be part of those progresses but is 
not well understood. A study on calcified dental plaque has shown that 
from the Neolithic (remains dated 7550–5450 years before present) to 
the medieval times, the oral microbiota was more diverse than the pres-
ent oral microbiota and was relatively stable.13 A study of 1400-year-old 
coprolites from northern Mexico shows a more diverse gut microbiota 
compared with those of modern urbanized populations, however, more 
similar to rural populations with different modern life-styles.14 Many 
questions remain as we are just at the beginning of our understanding 
on how our own microbiomes are key to our survival.

 WHAT ABOUT DISEASE?

Human diseases are not a new burden. At a middle-age monastic site in 
Germany, adult skeletons were recovered with evidence of mild-to-severe 
periodontitis (oral microbial infection leading to tooth loss). Using DNA 
extracted from the teeth of the skeletons, researchers were able to recon-
struct the genome of a known pathogen, Tannerella forsythia,15 and iden-
tify the molecular signatures of other periodontitis-associated species.

The treatment of disease has been an interest of any society, and 
 microbial modification has always been a component of treatment. While 
plant-based therapy was probably the way to treat diseases in Neolithic 
times, refined chemical compounds are now available as  pharmaceuticals. 
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Regardless of the source, the microbiome can be targeted by these anti-
microbials modifying community structure and  metabolic potential.16,17 
Next-generation sequencing is providing a greater depth of understand-
ing of the broader effect during treatment as well as host microbiome 
recovery post-treatment.18

Medical challenges where antimicrobial therapy has been unsuccess-
ful have led to new approaches, such as fecal transplants. Refractory 
recurrent Clostridium difficile infections do not respond to appropriate 
antibiotic therapy. Fecal transplants offer the possibility of a rapid re-
modeling of the receiver gut microbiome toward its donor’s transplant 
profile, and at the same time eliminate C. difficile challenge.19,20

Treatment successes and failures might have to be revisited in the 
context of the host–microbiome relationship. Therapeutic drugs alter 
the host–microbiota composition and can colocalize specific bacteria 
to lympoid tissue or cells where they can synergistically modulate and 
influence the efficacy of the therapeutic drugs.21 Thus, in addition of be-
ing the target, the microbiome can also act as a modulator of treatment 
efficacy by altering the expected effect.21,22 A thorough understanding of 
the molecular bases of host–microbiota interactions could lead to the 
development of new therapeutic strategies for treating human disorders, 
as well as decreasing the toxicity of some of the present treatments.

While new approaches are being designed, the realms of traditional 
eastern and western medicine are slowly beginning to intersect with our in-
creased understanding of the microbiome role in health and disease. Tradi-
tional Chinese medicine has been widely used for millennia in the treatment 
of various diseases in East Asian countries. The analysis of tongue coating, 
a fundamental practice in Chinese medicine, has been used as a basis to 
differentiate the microbiota in the case of hot and cold syndromes.23 The 
observed differences suggest that tongue-associated microbiomes could be 
used as a novel holistic biomarker to subtype human host populations.

 FOOD, BIOTRANSFORMATION, AND LIFE

Since food and nutrition are essential to the survival of all living beings 
on Earth, it comes as no surprise that the first metagenomic studies have 
focused on the gut microbiota. As the body of publication is significant, 
we will look at two cross-pollinations among fields.
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The comparative genomic analysis of the genome of the giant panda 
uncovered the presence of the enzymes associated with a carnivorous 
digestive system while lacking the enzymes to digest cellulose, the princi-
pal component of their bamboo diet. The apparent metabolic contradic-
tion was resolved while studying their gut microbiome. The study shows 
that Clostridia bacteria appear to be the microbial symbionts bridging 
this necessary metabolic gap.24 Without the presence of Clostridia in the 
gut microbiome, the panda would not be able to survive on a diet of 
bamboo. The presence of stable and specific cellulose-degrading spe-
cies in gut microbiome has allowed the giant panda to transition from a 
carnivore to a herbivore life-style, illustrating a coevolutionary process 
between the host and its gut microbiome.

This importance in energy balance has been underlined in metabolic 
transfer from bacteria to the host in obesity, in voluntary diet modifica-
tion, as well as in the forced change of diet due to habitat loss.25–27 In 
both humans and mouse models, it has been shown that changes to the 
gut ratio of Bacteroidetes/Firmicutes modulate the capacity for energy 
harvest, with a decrease of Bacteroidetes being associated with obesity. 
This correlation allowed for a better understanding of the physiology of 
the Australian sea lion metabolism. Their gut has a dominant composi-
tion of Firmicutes predisposing this aquatic mammal toward an excess 
of body fat needed for thermoregulation within their cold oceanic habi-
tat.25,28,29 Microbiota balance or dysbiosis depends on the context and 
physiology of the host. The numbers of bacteria or genes by themselves 
do not provide a complete story: a larger-scale analysis is required to un-
derstand the intricacy of the microbiome relationships sustaining life.25–27

 SOME PRACTICAL USAGE OF THE MICROBIOMES

The utilization of bacteria in food production by many societies/civiliza-
tions/cultures predates modern microbiology. In Asia, before the end of 
the first millennia AD, a low-temperature lactic acid-based fermentation 
process was used to preserve food for the winter season. Now kimchi 
is known worldwide. Metagenomic analysis of the kimchi fermentation 
process led to a greater understanding of microbial community compo-
sition, pH, and respiration-associated function modulation during this 
month-long process.30
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During the middle ages, the Europeans developed the process to  
produce the cheese products that we still enjoy. Today, the Italian 
 Mozarella, Grana Padano, and Parmigiano Reggiano cheeses, while from 
different geographic regions, are all produced by microbial communities  
with similar metabolic functionality, composed of thermophilic, acidu-
ric, and moderately heat-resistant lactic acid bacteria.31 A few additional 
examples of the ubiquitous use of microbiota in food are the prepara-
tion of cocoa bean in the Americas, the fermentation of millet to make 
boza drink in the Middle East, and the fermentation of teff  to make the 
sourdough-risen flatbread injera in Africa.

The soil microbiome around the plant rhizosphere is modified by 
plant roots exudates. In agriculture, metagenomics approaches  offer 
the potential to modify soil microbiome structure using blends of  
 phytochemicals that might support beneficial microbiota with the goal 
of enhancing crop yields, sustainability, and fend off  infections by 
 maximizing a healthy plant–soil interaction.32

In aquaculture, metagenomics approaches can help in the design of 
preventive strategies with the goal of enhancing the health of the fishes 
by the manipulation of their gut microbiota. Recently, the gut microbi-
ota of commercially valuable warm-water fishes, including the channel 
catfish and the largemouth bass, has been characterized with the goal of 
growth optimization and disease control.33

 OUR SOCIETAL CHOICES INFLUENCE THE MICROBIOMES

As we move toward a better understanding of the intersection of human 
behaviors (both individual and societal), the human microbiome, and 
the environments in which humans live, the overall complexity drastical-
ly increases. The choices we make either as an individual or as a society 
influence our interactions with the diverse microbiomes surrounding us.  
Furthermore, the impact is not limited to us and can be positive,  neutral, 
or negative to others. For example, the microbial communities in  
the drinking water distribution systems depend on the source of 
 water, the tubing material (copper, stainless steel, or polyvinyl chloride), and 
the regimen and selection of disinfection methods on drinking water by  
private and municipal water services leading to a safe drinking water.34–36 
Although the microbiota present in the drinking water sources might be 
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regionally or locally determined, the need for clean and safe drinking 
water is universal.

Architectural choices of our homes, schools, and hospitals, by the 
design of the airflow, the temperature, the relative humidity, and the in-
teractive surfaces in the different sections of the rooms or buildings, in-
fluence the surrounding surface and aerosol microbiota.37,38 Our choice 
of mode of transportation, whether private or public, also has an influ-
ence that might be as equivalent to our exposure to the outdoor condi-
tions from the same environment, showing that safety exist also in num-
bers.39,40

At a larger scale, how different societies use the land and water re-
sources can have long distance and long-term effects in the microbiome 
of those environments. Hurricanes, for example, are able to aerosolize a 
large amount of microbial cells to the upper troposphere that can po-
tentially influence the hydrological cycle, clouds, and climate.41 The mi-
crobiome–society interaction is bidirectional and until recently we have 
been largely blind to this relationship.

Recent developments create greater optimism for a better manage-
ment of  our inner ecology as well as the biosphere. These events include 
a wider spread of  scientific theories, as shown by the large number of 
individuals taking online scientific courses,42,43 the increasing strength 
of  citizen science,44,45 and a greater access to scientific tools through 
open-source software and scientific literature from open-access pub-
lishing.46

 DIVING INTO A DETAILED VIEW OF THE SCALES INVOLVED

Looking at a smaller scale, the coexistence of microorganisms in com-
munities, microbial networking, and community development are at the 
center of the dynamic aspect of the microbiomes. Bioinformatic ap-
proaches are allowing us to redefine our understanding of the relation-
ships between members within the communities, as well as the rules of 
association, competition, and exclusion.

Metagenomic approaches are finally allowing an in-depth compara-
tive analysis of  multiple sites within an individual and across popu-
lations. The first large-scale effort of  this type was performed in the 
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Sargasso Sea at different oceanic sampling stations.47 More recently, 
in the cohort of  the HMP, a study of  18 body sites was performed, 
and later was complemented by an additional selection reaching an 
overview of  22 human body habitats.7,48 This biogeography is associ-
ated with the presence of  relationship networks of  diverse structures. 
Traditional microbiology has shown that these relationships can lead 
to direct physical interactions associated with the succession of  bio-
film formation, ultimately leading to an interactome.49 When analyzing  
next-generation sequencing data, this network expands to co-occur-
rence networks, where phylotypes are typically, but not always, pres-
ent together at a site.8,23,50 Although we are far from understanding all 
of  these relationships, a metabolic interdependence exists, because of 
a degradation cascade of  nutriments that affect both the microbiome 
and the host.

Within a microenvironment, horizontal gene transfer seems to be a 
competitive option to complement the panel of functional capabilities, 
as shown by the analysis of available genomes.51 In the specific case of 
the human gut bacterium Bacteroides plebius, the genetic exchange oc-
curred with a marine bacteria. This gene transfer facilitates seaweed di-
gestion in some Japanese individuals carrying B. plebius enhanced by 
this genetic addition.52 Another available option in multispecies commu-
nities is to use mutualistic cooperation to both enhance nutriment intake 
and protecting themselves from the host.41,42,53,54

The complexity of the interactions becomes more apparent as we go 
deeper into the details of the massive data sets. The initial findings on 
the gut microbiome, from the MetaHIT project, indicates that microbial 
genes outnumber human genes by more than 100-fold, predicting over 3 
million bacterial genes in the gut alone.55 Multiple scales of observation 
are needed, from the atomic structure modification of proteins during 
an enzymatic digest to the gradient of molecules within the cell, the che-
motactic abilities of cells to improve their nutrient uptake or flee toxics, 
the surface protein providing direct interaction with other cells and to 
the assemblage of cells forming biofilms, and the surface to which the 
biofilm associates. These integrated scales of interactions, mechanistic 
events, and optimizations are crucial for survival, dormancy, or ability 
to thrive. It is up to us to understand the rules that have been in place 
for million of years.
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 WHAT WOULD HELP TO FURTHER THE LEAP?

Metagenomics heavily relies on reference databases to improve the anal-
ysis phase for phylogenetic, metabolic, and functional content includ-
ing hypothetical small RNAs and proteins. Assessing the biodiversity in 
greater details also presents the challenge of validation in the laboratory 
as it is a more controlled environment.

 Bacterial Systematics
For over 140 years, the world of bacterial systematics has been evolv-
ing because of technological and conceptual advances.56 As of 2013, the 
number of validly named taxa rose to about 2000 genera and 10,600 
species from 29 phyla (list graciously maintained by Dr Euzéby, avail-
able at www.bacterio.net). To this list, additional organisms deposited in 
culture collections are awaiting naming after isolation and genome se-
quencing during large-scale efforts such as the HMP57,58 (list available at 
www.hmpdacc.org). Beyond traditional methods, whole-genome study 
allows proper positioning in the phylogenetic hierarchy. However, the 
move to whole-genomes phylogenetic analysis has been curbed, until 
recently, by the limited number of whole-genome and high-quality ge-
nomic sequence drafts. Additionally, new tools need to be developed to 
go further and define strain-level phylogeny based on genetic content.59 
This will undoubtedly bring some conflicts with the present classifica-
tion as it happened when the 16S rRNA gene phylogenetic classification 
competed with the phenotypic classification.56 Concurrently, databases 
such as the Ribosomal Database Project, Greengenes, SILVA, Human 
Oral Microbiome Database, and others expand beyond officially named 
bacteria and maintain our ability to do 16S rRNA gene phylogenetic 
analyses.60–63

 Bacterial Quantitation
Refined quantitative analysis to study the relative abundance of differ-
ent bacteria will have to take into account the copy number of genes 
including the 16S rRNA gene. As shown in Table 8.1, the number of 16S 
rRNA genes can vary from 1 to 15 with no specific correlation to genome 
size, GC%, or membership to a specific genus or phylum. For example, 
two strains of the Firmicutes Bacillus subtilis differ by two copies (8 vs. 
10), and their genome size by 4% (Table 8.1). Within the Proteobacteria, 
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(Continued)

Table 8.1 16S rRNA Gene Copy Numbers in a Subset of Bacterial Genomes

Phylum

Average 16S  
rRNA Gene  
Copies in Phyluma Organism Name

16S rRNA 
Gene Copy 
Numberb

Genome  
Size (bp)d,e GC%e

Actinobacteria 3.1 ± 1.7 Frankia sp. Cc13 2 5,433,628 70.1

Frankia sp. EuI1c 3 8,815,781 72.3

Kineococcus radiotolerans 
SRS30216

4 4,956,672 74.2

Bacteroidetes 3.5 ± 1.5 Candidatus Sulcia muelleri 
DMIN

1 243,933 22.5

Tannerella forsythia ATCC 
43037

2 3,405,521 47.0

Porphyromonas gingivalis 
ATCC 33277

4 2,354,886 48.4

Cyanobacteria 2.3 ± 1.2 Synechocystis sp. PCC 6803 2 3,947,019 47.3

Deinococcus-
Thermus

2.7 ± 1.0 Thermus thermophilus HB-8 2 2,116,056 69.5

Deinococcus radiodurans R1 3 3,284,156 66.6

Firmicutes 5.8 ± 2.8 Lactobacillus casei ATCC 334 5 2,924,325 46.6

Staphylococcus aureus JH1 6 2,936,936 33.0

Streptococcus pyogenes M1 
GAS (SF370)

6 1,852,441 38.5

Bacillus subtilis W23 8 4,027,676 43.9

Bacillus subtilis 168 10 4,215,606 43.5

Brevibacillus brevis NBRC 
100599

15 6,296,436 47.3

Proteobacteriac 2.2 ± 1.3 (a) Bartonella henselae 
Houston-1

2 1,931,047 38.2

Erythrobacter litoralis 
HTCC2594

1 3,052,398 63.1

3.3 ± 1.6 (b) Candidatus Zinderia 
insecticola CARI

1 208,564 13.5

2.7 ± 1.4 (d) Anaeromyxobacter 
dehalogenans 2CP-C

2 5,013,479 74.9

Desulfovibrio vulgaris 
Hildenborough

5 3,773,159 63.2

3.0 ± 1.1 (ε) Helicobacter pylori 26695 2 1,667,867 38.9

Campylobacter jejuni 269.97 3 1,845,106 30.4

5.8 ± 2.8 (g) Buchnera aphidicola 
(Acyrthosiphon pisum)

1 655,725 26.3

Francisella tularensis FSC147 3 1,893,886 32.3

Aggregatibacter 
actinomycetemcomitans 
D7S-1

6 2,309,073 44.3
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the GC% range from 14% to 75%, while the number of ribosomal operon 
varies from 1 to 15. Thus, the interpretation of microbial diversity and 
abundances, (relative abundance distribution, estimate of abundance of 
different taxa, overall diversity, and similarity measurements) based on 
the phylogenetically informative 16S rRNA gene quantitation, should 
consider the variation in both the abundance of organisms and the op-
eron copy numbers per genome. Refined analyses will only be available 

Phylum

Average 16S  
rRNA Gene  
Copies in Phyluma Organism Name

16S rRNA 
Gene Copy 
Numberb

Genome  
Size (bp)d,e GC%e

Proteobacteriac 5.8 ± 2.8 (γ) Haemophilus influenzae  
86-028NP

6 1,914,490 38.2

Escherichia coli  
K-12 MG1655

7 4,641,652 50.8

Yersinia pestis 91001 7 4,803,217 47.7

Klebsiella pneumoniae 
HS11286

8 5,682,322 57.1

Vibrio cholerae N16961 8 4,033,464 47.5

Vibrio vulnificus MO6-24/O 9 5,007,768 47.0

Aeromonas veronii B565 10 4,551,783 58.7

Vibrio natriegens  
ATCC 14048

13 5,131,685 45.0

Photobacterium  
profundum SS9

15 6,403,280 42.0

Spirochaetes 2.4 ± 1.0 Borrelia burgdorferi N40 1 1,339,539 28.6

Treponema denticola  
ATCC 35405

2 2,843,201 37.9

Treponema pallidum Chicago 2 1,139,281 52.8

Synergistetes 2.5 ± 1.0 Anaerobaculum mobile  
DSM 13181

2 2,160,700 48.0

Thermanaerovibrio 
acidaminovorans
DSM 6589

3 1,848,474 63.8

Tenericutes 1.6 ± 0.5 Mycoplasma genitalium G-37 1 580,076 31.7

aFrom Vetrovsky and Baldrian.73

bFrom the following sources: ribosomal RNA database (rrnDB).74

cValues are provided for each subdivisions. (a) Alphaproteobacteria, (b) Betaproteobacteria, (d) Deltaproteo-
bacteria, (ε) Epsilonproteobacteria, and (g) Gammaproteobacteria.
d“bp” stands for base pairs.
eFrom National Center for Biotechnology Information (NCBI) Genome Information by Organism (www.
ncbi.nlm.nih.gov/genome) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Complete Genomes.75

Table 8.1 16S rRNA Gene Copy Numbers in a Subset of Bacterial Genomes (cont.)



 Metagenomics for Bacteriology 123

for a small community where all the partners are defined. A software is 
available that estimates both 16S rRNA gene copy number and abun-
dance of organisms.64 Further efforts need to be spent to relate these 16S 
rRNA gene copy number with genome copy number as discussed in the 
text below.

Not all bacteria conform to the patterns of genome organization, 
chromosomal replication initiation, elongation, termination, and ge-
nomic segregation during cell division exemplified by Escherichia coli,  
whose genome is distributed in one chromosome and has only one  genome 
copy per cell. To be truly quantitative, we will also need to  understand 
the ploidy of each organism in function of the experimental condi-
tions (Table 8.2). The biological significance of polyploidy will depend  
on the system studied and might be involved in diverse functions such 
as DNA recombination among genome copies, replacement of deleteri-
ous mutations through homologous recombination of genomes, or to 
mitigate the accumulation of deleterious mutations over time.65–69 Ad-
ditionally, the cells can replicate asynchronously, displaying a heteroge-
neous DNA content.70,71 We must contend with the fact that the genome 
copy number can change in the different phases of growth and that more 
than one ploidy can be observed in a population.70,72 An understanding 
of the role of polyploidy and replication will provide insights into the 
extent the structure and content of the genome influences the pheno-
typic features of cells with multiple genomes, as well as influence the 
data from each “omics” platforms. In some remarkable cases there is a 
complementation of the physiology of both hosts and their polyploid 
symbionts, and these functional interactions remain to be elucidated.

 Defining What Is a Strain
Bacteria, both in the laboratory and in nature, are studied at the popula-
tion level. Bacterial populations are not composed of millions of iden-
tical individuals. During cell duplication, the genomes of individual 
cells are subjected to mutations, producing a genetically heterogeneous 
population within a species. Large-scale metagenomic studies reveal 
that microbial communities are predominantly organized in sequence-
discrete populations, and the genomes of the organisms within those  
populations share higher than 94% average nucleotide identity (ANI). 
These sequence-discrete populations are important units within  natural 
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Table 8.2 Genome Copy Numbers Per Cell of a Subset of Bacterial and Archaeal 
Species

Phylum Organism Name

Genome 
Copy  
Number 
(Average 
or Range) Ploidy

Generation Time, 
Growth Phase
Environment-Free 
Living/Facultative-
Obligate Symbiont References

Bacteroidetes Blattabacterium sp. 323–353
10–18

Polyploid
Polyploid

Obligate 
endosymbiont 
of cockroach 
Blattella oreintalis

Obligate 
endosymbiont 
of cockroach 
Periplaneta 
americana

Lopez- 
Sanchez  
et al.76

Candidatus Sulcia 
muelleri DMIN

140–880 Polyploid Obligate 
endosymbiont 
of green 
sharpshooter 
Draeculecephala 
minerva

Woyke  
et al.77

Aphanizomenon 
ovalisporum

84–122
1–4

Polyploid
Oligoploid

Akinetes (dormant 
spore-like cells)
Vegetative cells

Sukenik  
et al.78

Synechococcus PCC 
7942

4 Oligoploid Exponential and 
stationary phases 
(generation time 
1440 min)

Griese  
et al.67

Synechocystis PCC 
6803
Motile wild-type

218
58
58

Polyploid Exponential phase
Linear phase 
(1200 min)
Stationary phase

Griese  
et al.67

Deinococcus-
Thermus

Deinococcus 
radiodurans

10
4–8

Oligoploid Exponential phase
Stationary phase

Hansen,79 
Minton80

Thermus thermophiles 
HB8

4–5 Oligoploid Exponential and 
stationary phase 
(slow growth 
conditions)

Ohtani  
et al.81

Firmicutes Epulopiscium sp. 
Type B

20,000–
400,000
49,000–
120,000

Polyploid Symbiont of the 
unicornfish Naso 
tonganus symbiont

Mendell  
et al.,82  
Angert83

Lactobacillus lactis 
subsp. lactis IL1403

2 Diploid Doubling time 
223 min (slow 
growing culture)

Michelsen  
et al.,84

Proteobacteria Azotobacter vinelandii >40
>80
>100

Polyploid Late exponential 
phase
Early stationary 
phase
Late stationary 
phase

Nagpal  
et al.,85 
Maldonado 
et al.86
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microbial communities. Bacteria that belong to a particular popula-
tion, but of different environment, significantly show less genetic  identity 
to other co-occurring populations, typically less than 80–85% ANI.  
This genetic metric offers higher resolution than the widely used 16S 
rRNA gene sequencing analysis.93,94 Defining strain might be contextual 
at first, until we have a more complete view of cell evolution. To facilitate 

Phylum Organism Name

Genome 
Copy  
Number 
(Average 
or Range) Ploidy

Generation Time, 
Growth Phase
Environment-Free 
Living/Facultative-
Obligate Symbiont References

Proteobacteria Buchnera sp. 120 
(50–200)

Polyploid Obligate 
endosymbiont 
of the aphid 
Acyrthosiphon 
pisum; genome 
copy number 
varies with host 
developmental 
stage

Komaki and 
Ishikawa69,87

Caulobacter 
crescentus

2.1 Monoploid Doubling time 
93 min

Pecoraro  
et al.68

Desulfovibrio vulgaris 4 Oligoploid Doubling time 
2400 min

Postgate  
et al.88

Escherichia coli 2.5/1.2a

6.8/1.7a

Monoploid
Merooli-
goploid

Doubling time 
103 min
Doubling time 
25 min

Pecoraro  
et al.68

Neisseria gonorrhoeae 3 Oligoploid Exponential phase 
(generation time 
60 min)

Tobiason  
and Seifert89

Pseudomonas putida 20/14a Polyploid Doubling time 
46 min

Pecoraro  
et al.68

Wolinella 
succinogenes

0.9 Monoploid Doubling time 
96 min

Pecoraro  
et al.68

Spirochaetes Borrelia hermsii 5
14 (12–17)

Oligoploid
Polyploid

Late exponential 
phase (maintained 
in laboratory)
Isolated from mice

Kitten and 
Barbour90

Euryarchaeota Methanococcus 
maripaludis

55
30

Polyploid Exponential phase
Stationary phase

Hildenbrand 
et al.91

Methanothermobacter 
thermoautotrophicus

2
1–2

Diploid Exponential phase
Stationary phase

Majernik  
et al.92

aBased on gene copy number near origin/gene copy number near the termini.

Table 8.2 Genome Copy Numbers Per Cell of a Subset of Bacterial and Archaeal 
Species (cont.)
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the process, culture-independent “omics” techniques (transcriptomics, 
proteomics, and metabolomics) might further refine the taxonomi-
cal assignment and provide ecologically relevant properties of natural  
microbial populations. Quantification of yet-to-be-cultivated bacteria 
can be improved with the characterization of ecologically appropriate 
genes and pathways in sequence-discrete populations, which uniquely 
define the population genomic signatures.

 Expanding Gene Catalogs
Identifying the genetic content of a microbiome is the first layer pro-
vided by the new generations of sequencing machines. From a metage-
nome or a metatranscriptome, the avalanche of information needs to be 
transformed in order to go beyond a simple comparison of gene counts. 
Genomic sequences from reference genomes are used in multiple aspects 
of the analysis, including gene definition, gene function, taxonomy, and  
so on. The first genome sequenced was isolated from the bacteria 
 Haemophilus influenza in 1995.95 Since then, the number of genome 
 sequences has been growing rapidly and can be found in international  
 depositories comprising DNA Data Bank of Japan (DDBJ), the Eu-
ropean  Nucleotide Archive (ENA), and the genetic sequence database 
of the  National Center for Biotechnology Information (NCBI) of the 
United States (GenBank), as well as more specialized repositories. How-
ever, the  number of reference genomes needs to increase to keep pace 
with advancements in metagenomics. Beyond cultivability, gene catalogs 
and single cell  genomes will increase the pool of information to infer ad-
ditional layers of analysis.96–101

 Making Reference Strains Available
Presently, the number of cultivable strains deposited in reference strain 
depositories that are not yet sequenced is decreasing because of inter-
national efforts. The next frontier is in obtaining strains that were previ-
ously thought to be uncultivable. Some of the strains previously classi-
fied as “yet-to-be-cultivable” are now deposited at the American Type 
Culture Collection (ATCC) and sequenced by the means of the HMP,99 
awaiting further functional studies.

For a successful understanding of the microbiome and its interaction 
with the environment, novel large-scale investigations into the biology 
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of single organisms and ecological models that integrate phylogenetic 
and functional relationships among organisms are required. Bacterial 
isolates available now or in the future will enable both biochemical-
based study of their dynamic genomes and culture-based studies of their 
functional role in microbial communities. This will aid in improving as-
sembly and annotation of metagenomes, and in quantification of micro-
bial communities in their residing habitats.

 Metabolic Potential
Bacteria exist in a wide range of environments and have extremely di-
verse physiological capabilities. Microbiome functionality can be de-
rived either from gene-based knowledge or the intersection of other 
omics including metagenomics. Metabolism is key for the living cell. 
Databases such as KEGG, MetaCyc, Carbohydrate-Active enZYmes 
Database (CAZy), and Braunschweig Enzyme Database (BRENDA) 
considerably enhance our ability to create inferences leading to a greater 
understanding of single species or a complex community.102–105 However, 
metabolism is not the only cell function, of which many aspects still 
remain unknown. For example, there is a large number of conserved 
proteins in international depositories for which a function needs to be 
identified to improve our understanding of the proteome.106–108

 Learning About Archaea
Most previous work has focused on bacteria, as information about 
 archaea is still nascent. Limited information is emerging about human–
archaeal associations and the role of these organisms in human physiol-
ogy. Much remains to be known about archaeal phylogenetic diversity, 
abundance, and biochemistry in situ. Current molecular approaches 
can reveal the genomic dynamics of methanogenic archaea associated 
with humans. These include Methanobrevibacter smithii, a methane 
 producer predominant in human colon and also present in the vagina, 
Methanobrevibacter oralis, which has been associated with subgingival 
diseases and is  capable to thrive at low pH in the stomach, and various 
other methanogens  including Methanosphaera stadtmanae, Methanobre-
vibacter millerae, and Methanobrevibacter arboriphilus.91,109–112 In the up-
coming years, we need to expand our  understanding of the role of archaea 
in the human microbiomes, as their transcripts are overabundant compared 
with their cell relative abundance.113
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In closing, novel approaches are essential to properly integrate metage-
nomics, proteomics, lipidomics, and metabolomics in a comprehensive 
and integrative conceptual framework. Proper annotation of data sets is 
the first step in this direction by using minimum information standards 
when depositing the data sets and the annotations, and standardizing the 
names of body sites as well as of other descriptive components.114–116 This 
opportunity is offered to all of us.
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Toward the Understanding  
of the Human Virome

Nadim J. Ajami and Joseph F. Petrosino

 INTRODUCTION

The collection of viral genomes present in any given sample is referred to 
as the viral metagenome or virome. The Earth virome is estimated to be 
composed of 1031 viral particles associated or not with a host, including 
humans.1–3 The study and our understanding of viromes has been stimu-
lated by the advent of next-generation sequencing platforms accompanied 
by improvements in unbiased viral nucleic acid extraction methods and 
decreasing sequencing costs. The virome contains the most abundant 
and fastest mutating genetic elements of the Earth.4 Viruses interact with 
the human host through its bacterial communities (prokaryotic viruses) 
as well as by residing or interacting with human cells in acute, persistent, 
or latent infections.4 The genetic characterization of the virome, as a con-
stituent of the microbiome, has trailed behind analyses of the bacterial 
microbiome, in part, because of the lack of a conserved sequence that 
could be readily used to assign taxonomy and because many of the genes 
encoded in the virome have not been previously annotated.

The genomic age began in 1977 when the Escherichia coli bacterio-
phage ΦX174 was sequenced.6 Twenty-five years later, in 2002, the viral 
metagenomics area arose with the publication of two uncultured ma-
rine viral communities.7 Viral metagenomics has revolutionized the field 
of viral ecology by providing an unbiased, culture-independent, and 
high-throughput method to study the structure, function, and metabolic 
potential of viral communities and their environmental impact. Unlike 
traditional laboratory techniques for microbial and viral identification, 
metagenomics does not require prior isolation and clonal culturing for 
species characterization. The use of metagenomics has been particularly 
suitable for providing a general overview of the community structure 
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(richness and abundance) and its functional potential (gene products). 
In principle, it allows the identification of any organism, including those 
commonly not detected because they are difficult to isolate and grow 
under laboratory conditions. Such organisms are estimated to constitute 
between 90% and 99% of microbial species.8,9

The use of viral metagenomics can be applied to a wide variety of 
fields ranging from ecology to environmental sciences,7,10,11 the chemical 
industry,12 and human health.13–18 The most powerful use of viral metage-
nomics is in its application to the characterization of viral communi-
ties.3,13,19–22 Breitbart performed the first example of viral metagenomics 
in 2002 where she and her colleagues revealed that viral diversity had been 
widely underestimated because in approximately 200 liters of marine  
water, more than 7000 different viral genomes were found.7 This high 
degree of viral genetic diversity has been confirmed by further metage-
nomic studies of marine samples.23–25

VIROME CHARACTERIZATION WORKFLOW

The current data workflow involving metagenomic analyses initi-
ates with quality control and preprocessing of raw reads produced 
by high-throughput sequencing technologies with the goal of creating a 
high-quality metagenomic dataset truly representative of the genotypes 
and their relative abundance in a sample. Quality control measures in-
clude the investigation of length, quality scores associated with each 
base, GC content, number of ambiguous bases, and the sequence com-
plexity. All of these parameters are dependent on the sequencing tech-
nology and the upstream processes involved. Subsequently, after initial 
quality control assessment, foreign (nonviral) sequences are filtered re-
sulting in a viral-only dataset. This filtering has to be carefully evaluated 
as part of these sequence data might come from genes of bacterial ori-
gin transferred to phages or from erroneously annotated sequences.26,27 
The taxonomic characterization of the virome relies on similarity-based 
methods usually employing BLAST searches,28 although other useful 
algorithms exist such as FAAST, BLAT, VIROME, and MEGAN.29–31 
Searches based on stringent E-values can yield too few classifiable se-
quences and, in contrast, less-stringent E-values can result in a high 
number of incorrect assignments.13 Moreover, the content of public viral 
sequence databases is incomplete and poorly reflects only the existing 
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biological diversity.19 In addition, viruses exhibit a high genetic diversity 
and divergence, which, in turn, limits the probability of finding similari-
ties based on nucleic acid alignments. As an alternative, translated nu-
cleotide sequences are used to aid on the classification of viral sequences 
because synonymous mutations are bypassed in the translation step.32

RECENT VIROME STUDIES

The collection of viruses found in humans includes viral particles ca-
pable of infecting eukaryotic, bacterial (bacteriophages), archaeal cells, 
and virus-derived genetic elements inserted within host chromosomes 
that have the potential to generate infectious particles, express proteins, 
and alter host–gene expression [proviruses, prophages, endogenous 
retroviruses (ERVs), and endogenous viral elements (EVEs)].4 Charac-
terization of the human virome has been mostly attempted using fecal 
samples.14,33–38 Initial studies sought after DNA viruses in a stool sample 
obtained from a healthy individual and results showed most of the se-
quences generated were unknown. Among the identifiable viral sequenc-
es, the majority corresponded to bacteriophages and the community 
was estimated to have a high richness (∼1200 genotypes) and diversity.34 
Similarly to previous findings, Breitbart et al.33 reported an elevated per-
centage of unknown sequences (66%) and a significant abundance of 
phages in a study using feces of a 1-week-old infant.33 Comparable ob-
servations were also reported by two studies on the DNA virome of the 
human gut, in which the percentages of unknown sequences were 81% 
and 98%, respectively, and phages dominated the viral community.14,37

INTERACTION OF THE VIROME WITH THE HUMAN HOST

In addition to DNA viruses, RNA viruses of the human gut have also 
been studied. In a study performed using stool samples form healthy 
adults, Zhang et al.38 found that only 8.9% of the sequences were un-
known and that among the identifiable viral sequences there were an 
insignificant number of phages. The majority of the identifiable viruses 
were plant viruses (91.5%), presumably introduced through consump-
tion of contaminated produces.38

In humans, as in other mammals, viral genomes can replicate and per-
sist in most nucleated cells. Viruses can be detected after clinical infections 
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are resolved, usually hidden from the immune system in cells including 
neurons, hematopoietic cells, stem cells, and vascular endothelial cells.

Analogous to the bacterial microbiome, the virome is also in constant 
interaction with the host immune system maintaining a dynamic equilib-
rium. Constant exposure to low-virulence viruses and subclinical infec-
tion stimulate mucosal immune responses eliciting activation of immune 
cells and conferring resistance to other infections.39 It is estimated that 
an individual healthy human harbors over 10 permanent chronic sys-
temic viral infections; however, the chronic carriage of viruses is likely 
to be underestimated because of the lack of broadly used inexpensive 
techniques to detect and quantify extremely diverse and scarce mem-
bers of the virome.4,40 Nonetheless, viruses including herpesviruses, poly-
omaviruses, anellovirues, adenoviruses, and papillomaviruses have been 
shown to continuously activate the immune system through responses to 
pathogen-associated molecular patterns, and antigens are generated as 
these viruses reactivate from latency or continually replicate.4

Retroviruses are the only known eukaryotic viruses that require 
chromosomal integration as part of their replication cycle. However, 
elements from multiple other virus species have been identified to be 
integrated.41,42 The presence of EVEs in our genomes suggest a role of 
viruses in gene transfer and evolution.41 ERVs comprise 8% of the hu-
man genome and they are the largest contributors to the EVEs found 
in our genomes.42,43 The impact of EVEs in host biology include the in-
troduction of genetic variation, regulation of host gene expression, and 
coding of viral components, all of which have the potential to influence 
the host immune to self  and foreign antigens.42

Asymptomatic systemic viral infections can impact the host by play-
ing an important role in regulating the transcriptional state of healthy 
people and have been linked to diseases such as asthma and type 1 dia-
betes.39 Constant but low levels of immune activation often result in in-
flammatory states and idiopathic systemic inflammation has been linked 
to pathologies including diabetes, cardiovascular diseases, and metabol-
ic syndrome. Although the etiologies of this inflammation are not fully 
understood, the systemic and mucosal virome is sought to play a role.4 
In addition, the systemic virus may also contribute to the diversity of 
phenotypes observed in hosts upon other infections.
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Many studies centered on the bacterial component of the microbi-
ome attribute results to alterations in the bacterial community without 
acknowledging the virome and its relation to other components of the 
human microbiome.44 There is extensive literature describing interac-
tions between virus and bacteria in respiratory tract infections. This 
is exemplified by the increase in pneumococcal and staphylococcal 
pneumonia seen during influenza pandemics. Furthermore, viruses have 
been associated with increased severity of bacterial infections of the re-
spiratory system.39,45 These trans-kingdom interactions are not uncom-
mon in mammals, since recent studies suggest that bacteria contribute 
to the infectivity of retroviruses and enteroviruses by direct interaction 
of viruses with bacterial products.46–48

Viruses that infect bacteria are highly variable and diverse across in-
dividuals.36,37 Bacteriophages directly impact the structure of the bacte-
rial microbiome via gene transfer and lysis of bacterial cells, conferring 
new phenotypes and opening niches allowing invasion or overgrowth of 
other bacteria, respectively.49 Bacteriophages can have an impact in the 
host immune system by modifying bacterial cells and triggering inflam-
matory responses through toll-like receptor signaling. Such effects have 
also been observed in parasitic infections with Leishmania and Tricho-
monas.50,51 It has been proposed that bacteriophages can interact with 
the human host by direct contact with epithelial cells and accessing the 
lamina propria through breaks in the intestinal mucosa subsequently 
spreading systemically.49,52 Bacteriophage capsid antigens are also im-
munogenic and can elicit antibody responses in human53 in addition to 
stimulating the production of cytokines such as interleukin 1b and tu-
mor necrosis factor-a by macrophages.54

Analogously, the interaction of the members of the virome with 
other components of the microbiome can dictate the outcome of a dis-
ease or a treatment. As explained above, the biological effects of the 
virome extends through its interaction with the microbiome and the host 
components. This is also applicable to experimental animal models of 
human diseases55–57 and needs to be taken in consideration when testing 
hypothesis and determining treatment efficacies. As an example, mice 
chronically infected with herpesvirus can increase resistance to Listeria 
monocytogenes and Yersinia pestis infection,58 activate NK cells and 
increase resistance to tumor grafts,59 delay onset of type 1 diabetes in 
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non-obese diabetic mice,60 and decrease adenoviral infection.61 Nonethe-
less, the same infections can increase susceptibility to autoantigen-driven 
experimental allergic encephalomyelitis,62 and affect malarial lethality.63 
Consequently, the complexity of the virome–host through direct and in-
direct interaction is likely to be high, thus having an unapparent effect in 
animal models of human disease.4

 CONCLUDING REMARKS

Viral metagenomics analyses have shown that more than 60% of the 
sequences in a viral preparation are unique, thus representing unknown 
viral species.19 Our current capacity of characterizing the members of 
the virome relies almost exclusively on the similarity of identified nucleic 
acid and protein sequences with published information. A major ob-
stacle in defining a virus is using nucleic acid sequence alignments given 
the enormous variability of these organisms at this level. Therefore, it 
is very likely that the virome includes novel viruses that have yet to be 
characterized.

The dominant approach to the development of therapeutics is based 
on the fact that diseases are caused by single etiologies and interaction 
of these etiologies with their host is what is usually targeted. Although 
this approach has proven to be successful in some cases (e.g., antibiotics 
and vaccines), it often obviates the role of the metagenome, its compo-
nents, and its crosstalk among members and the host.

Understanding the complexity of the effects of the virome in the host 
including pathogenic and nonpathogenic states will require efforts be-
yond the identification and characterization of viral etiologies. As its 
interaction with other members of the human microbiome and with the 
host during subclinical infections is further unraveled, we will be able to 
determine its true impact in human health. These efforts will undeniably 
lead to rapid clinical diagnosis, modulation of clinical therapies, and 
genome mining with industrial applications.5
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10
Promises and Prospects of Microbiome Studies

Maria C. Rivera and Jacques Izard

Since Anthony van Leeuwenhoek, first microscopic observations of 
the unseen microbiota and the more recent realization that little of the 
 microbes in the biosphere are known, humans have developed a deep 
 curiosity to fully understand the inner workings of the microbial realm. Our  
ability to characterize the complexity of microbial communities in their 
natural habitats has dramatically improved over the past decade thanks 
to advances in high-throughput methodologies. By eliminating the need to  
isolate and culture individual species, metagenomics approaches have 
removed many of the obstacles that hindered research in the ecology of 
mixed microbial consortia, providing valuable information about the di-
versity, composition, function, and metabolic capability of the community.

Microbes are the unseen majority with the capability to colonize every 
environment, including our bodies. The establishment and composition 
of a stable human microbiome is determined by the host genetics, im-
munocompetence, and life-style choices. Our life-style choices determine 
our exposure to many external and internal environmental factors that 
permanently or temporarily can influence our microbiome composition. 
Figure 10.1 illustrates some of the life-style-related factors that might 
influence the microbiota of the skin, mouth, and gut. It is not limited 
to what we carry, touch, breath, and eat. Other dispersal vectors include 
secretion, excretions, aerosols, air flow, animals, moving surfaces, water, 
beverages, food, contact, wind, tools, toiletry, and others. These influ-
ence the microbiome membership, who are present, and they have the 
ability to participate in the microbiome dynamic within an environment. 
The establishment of a microbial community is dependent on many en-
vironmental factors, including pH, temperature, altitude, weather, soil 
type, nutrient availability, relative humidity, air quality, pollutants, mi-
crobial competitors, and others. In other words, we are superorganisms 
interconnected with other living forms on this Earth.
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Fig. 10.1. Microbiome of modern humans is influenced by life-style choices. During everyday life, humans are exposed to many external and internal environmental factors that 
can influence the composition of their microbiome. The human microbiome is here represented by the microbiota of the skin, mouth, and gut, and next to each body site a series 
of environmental modifiers. Some of these modifiers, such as general health, diet, medications, and stress, can affect the microbiota of more than one body site, but others, such as 
toothbrush and toothpaste, can directly modify the microbiota of only one body site.
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The exploration of the microbial worlds uncovered the extreme mi-
crobial diversity throughout the biosphere, from hydrothermal vents on 
the ocean floor to the intestinal tract of animals. In addition to metage-
nomics, other technologies including metatranscriptomics, metapro-
teomics, metabolomics, and metalipidomics can provide better insights 
of the microbial ecosystems dynamics. Fundamental gaps in knowledge 
still exist. We will take few examples to discuss the promises of the 
upcoming discoveries.

 MICROBIOME DURING DEVELOPMENT AND DISEASE

Since the 1980s, advances in sequencing technologies have uncovered the 
immense diversity and functional capabilities of the microbial world. 
More recently, the introduction of next-generation sequencing (NGS) 
combined with metagenomics approaches has allowed a better under-
standing of the complexity of the interactions between animals and 
their associated microbiota, in particular, the gut microbiome.

The digestive tract of animals has coevolved with a diverse and com-
plex microbial community that responds to host diet and provides meta-
bolic signals to the host during its developmental stages among many 
other functions.1 The permeability of the gut facilitates the transport 
of metabolites produced by the microbiota, which allows the signaling 
and interactions between the gut microbiota and the host organs and 
tissues.2 Host immune and nervous system as well as behavior including 
mating can be influenced.1,3,4

The use of metagenomics approaches to understand the complex 
metabolic interactions between the human host and its microbiome has 
revealed extensive variability in the diversity and composition of the mi-
crobiome between individuals and throughout the life-span of the host. 
A representation of this knowledge is summarized in Figure 10.2. Our 
growing knowledge of the magnitude and complexity of the interac-
tions between the host and the gut microbiome is drastically changing 
our views of human health, disease, and aging.2 The lifelong changes in 
the complexity of the host–microbiome metabolic interactions offer the 
opportunity for the development of specific therapeutic interventions 
targeting the gut microbiome throughout the life-span of the host.
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Fig. 10.2. Gut microbiota in development and disease. The influence of the gut microbiota on human health is 
continuous from birth to old age. The maternal microbiota may influence both the intrauterine environment and 
the postnatal health of the fetus. At birth, about 100 microbial species populate the colon. Early environmental 
factors (e.g., method of delivery), nutritional factors (e.g., breastfeeding or bottle feeding), and epigenetic factors 
have been implicated in the development of a healthy gut and its microbial symbionts. Changes in gut microbial 
composition in early life can influence risk for developing disease later in life. During suckling, the microbial 
community develops rapidly; shifts in microbial diversity occur throughout childhood and adult life, and in old 
age, there is a decrease in the Bacteroidetes and an increase in the Firmicutes species. The gut microbiota is 
important for maintaining normal physiology and energy production throughout life. Body temperature regulation, 
reproduction, and tissue growth are energy-dependent processes that may rely in part on gut microbial energy 
production. Extrinsic environmental factors (such as antibiotic use, diet, stress, disease, and injury) and the 
mammalian host genome continually influence the diversity and function of the gut microbiota with implications 
for human health. Disruption of the gut microbiota (dysbiosis) can lead to a variety of different diseases, including 
(A) inflammatory bowel disease, colon cancer, and irritable bowel syndrome; (B) gastric ulcers, nonalcoholic fatty 
liver disease, and obesity and metabolic syndromes; (C) asthma, atopy, and hypertension; and (D) mood and 
behavior through hormone signaling. The gut microbiota is also important for drug metabolism and preventing 
the establishment of pathogenic microbes. (Reprinted with permission from the American Association for the 
Advancement of Science.2)
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 THERAPEUTIC POTENTIAL OF MICROBIOTA MODIFICATIONS

Metagenomic studies have uncovered the connections between the dis-
ease and the changes in the homeostasis of host–microbiota interac-
tions.2 Such findings have renewed the interest of the medical community 
toward therapeutic interventions targeting the gut microbiota. Although 
unknowingly, humans have performed microbial modification for hun-
dreds of years, the first deliberate use of microbial modification  for 
human health date from the beginning of the last century.5,6 In 1907, 
Ellie Metchnioff  suggested that the consumption of lactic acid bacteria 
could improve health and longevity, and initiated the modern probiotics 
movement. Probiotics are “live microorganisms that, when administered 
in adequate amounts, confer a health benefit on the host.”5,6 Although 
the application of comparative genomics approaches have contributed 
to elucidate the genetic components that confer probiotic properties to 
certain taxa, metagenomics methodology allows more comprehensive 
studies of the effect of probiotics.5,7 Metagenomics together with other 
omics approaches can potentially identify the metabolites and metabolic 
pathways inducing the host–microbiota feedback mechanism by which 
probiotics can modulate health.

Extensive multi-omics studies are needed to fully understand how 
changes in the ecology of the gut microbiota relate to disease and how 
to better design and utilize microbial modification therapies.8 Which are 
the microbiome structural and homeostatic changes associated with the 
development of secondary infections following the administration of 
broad-spectrum antimicrobials?9 How are the homeostasis and ecologi-
cal dynamics of the host-microbiome interactions affected by the elimi-
nation of specific taxa after immunization? Microbiota modification 
will soon fall into the realm of personalized and preventive medicine.10–13

So far, the best evidence of the therapeutic potential of microbiota 
modifications is fecal microbiota transplantation (FMT). The replace-
ment of the patient’s gut microbiome with the microbiome from a healthy 
donor has been very successful in the treatment of  antibiotic-resistant 
Clostridium difficile infections. More in-depth metagenomics studies 
from patients with C. difficile infections before and after fecal trans-
plants are needed to determine if  it is possible to obtain the same  
therapeutic benefits by introducing selected members of the microbial 
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community or if  indeed the full replacement of the gut microbiome is 
needed.14,15 The efficacy of therapeutic interventions based on micro-
biota modulation will have to be demonstrated by their ability to consis-
tently restore a healthy steady state. The success of the first randomized 
clinical trial demonstrating the effectiveness of the FMT for the treat-
ment of recurrent C. difficile infections has catalyzed the formation of 
FMT-patient advocacy groups, and the establishment of stools banks to 
ultimately encourage the development of targeted therapies.14,16,17 The 
success of FMT suggests that it might be appropriate to establish strict 
regulations for the screening of infectious disease in microbiome trans-
plants, similar to the ones in place for organ transplants.14,16,17

 CHALLENGES AHEAD: HUMAN MICROBIOME INFORMATION 
IN THE HEALTH CARE SYSTEM

In November 2013, the US Food and Drug Administration (FDA) 
approved the marketing of the NGS systems as diagnostic devices for 
human genome sequencing.18,19 The authorization by the FDA of the 
Illumina sequencing platform for whole human genome surveys in the 
clinical setting paves the way for the development of new sequencing-
based clinical tests, potentially including microbiome profiling. It is pre-
dicted that in the future, the patient genome and microbiome data can 
be integrated allowing the identification of medically relevant variants 
that might transform clinical research and patient care. Potentially, these 
combined data sets can help inform about disease predisposition or re-
sponses to drugs allowing the design of personalized care and/or early 
therapeutic interventions. Many challenges need to be conquered before 
microbiome information is routinely incorporated in health care.

Extensive studies of microbiome profile variations among healthy in-
dividuals are needed before microbiome data can be used for predicting 
disease predisposition, onset, and progression, and drug–response mod-
ulation. Similar to the human genome sequencing, the full integration of 
microbiome data in the clinical setting requires major research efforts in 
the collection of rigorous evidence supporting the role of the microbiome 
in health and disease, the development of appropriate regulatory and 
validation policies, the implementation of policies addressing patients’ 
rights, and the training of the physician and health care professionals 
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in microbiome data interpretation.20 A lot of research and validation 
will be required before the approval by the FDA of microbiome pro-
filing in the clinical setting. Accuracy, precision, analytical sensitivity 
and specificity, reference range, and reportable range will be scrutinized.  
In the United States, the Clinical Laboratory Improvement Amendments 
(CLIA), which perform testing of clinical laboratories to ensure their 
 accuracy in testing human samples, will have to develop new standards 
that can capture the microbiome complexity. As many other technologi-
cal advances and discoveries, there is likely to be a lapse of time before 
the actual adoption of the new technology into the clinical setting.

 ETHICAL CONSIDERATIONS OF MICROBIOME RESEARCH

In the 21st century, the Internet and other digital technologies have 
facilitated the access to personal information raising concerns related 
to privacy and data rights issues. The ease of the data accessibility has 
 serious implications for the regulation of  research in human subjects. 
In microbiome research, those regulatory issues are related to the selection 
and recruitment of human subjects, the possibility of individual or group 
stigma associated with the research findings, privacy and confidentiality, 
and informational risks associated with disclosure of some of the find-
ings.21–25 Additionally, microbiome research subjects may be identified 
by the disclosure of information collected from the behaviors survey 
and/or from the microbiota samples. In addition to the issues related to 
research-generated data, unique to the human microbiome are issues re-
lated to informed consent for future use of stored microbiota samples.26–28 
“Who owns your poop?” is the humorous and thought-provoking ques-
tion posed by Alice Hawkins and Kieran O’Doherty, while discussing 
the impact on microbiome research of issues related to privacy, consent, 
ownership, return of results, governance, and benefit sharing.28 Although 
some ethical issues are unique to microbiome research, similar ethical 
concerns were extensively debated during the Human Genome Project 
and, more recently, genome-wide association studies.24,29

To better address the ethical issues facing contemporary research such as 
microbiome research, in 2011, the US Department of Health and Human 
Services issued an Advance Notice of Proposed Rulemaking (ANPRM), 
entitled “Human Subjects Research Protections: Enhancing Protections 
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for Research Subjects and Reducing Burden, Delay, and Ambiguity for 
Investigators,” proposing changes to the “Common Rule,” as the current 
federal policy for the Protection of Human Subjects is known.43 Some 
of the ANPRM proposed changes include: (1) adjusting Institutional 
Review Board (IRB) review to contemporary research, (2) establishing a 
single IRB review for multi-institution research, (3) specific written con-
sent for the use of biospecimens, (4) standards for data security and pro-
tection of identifiable or potentially identifiable data, (5) implementing a 
systematic approach to the collection and analysis of data on unantici-
pated problems and adverse events, and (6) extending the federal rules to 
apply to all research, regardless of funding source, that is conducted at US 
institutions that receive some funding from a Common Rule agency for 
research using human subjects. The proposed revisions to the Common 
Rule present many challenges to the regulation of research using human 
subjects deserving immediate attention by the research community.30

The ethical issues facing microbiome research require the implemen-
tation of novel guidelines on the proper and ethical collection and use 
of the data generated by this technology. At the same time, to stimulate 
and facilitate the process of discovery and to keep pace with the latest 
technological advances, it is imperative for the regulatory agencies to 
implement a more agile and adaptable evaluation system.

The artist, like the scientist, can expose and highlight the ethical 
and privacy issues associated with new technologies. To raise awareness 
of our increasing access to biotechnologies, Gabriel Barcia-Colombo 
created the art installation ‘DNA vending machine’.31 The installation 
shows visuals of individuals whom donated mouthwash from which 
DNA was extracted, as well as a packaged vial of that DNA. The instal-
lation is both troubling and natural. Both oral microbiome and human 
DNA should be present in the beautifully condensed genetic informa-
tion presented by the artist. One can just wonder how such material can 
be used, and if  we should expect prepackaged microbiomes to be on the 
supermarket shelves.

Another side of this ethics debate is whether the microbiota has rights. 
Under the assumption “for the benefit of all,” we have the technological 
capacity to permanently eradiate members of the microbiota or, through 
synthetic biology, “create new microbiota.”32–34
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 CITIZEN SCIENTIST, CROWDSOURCED RESEARCH,  
AND THE MICROBIOME

The increasing evidence suggesting the important role played by the 
microbiota in development, aging, and many human diseases has spur 
great interest from the general public and has introduced the micro-
biome field to the citizen science movement.35–37 Using the citizen sci-
ence principles of crowdsourcing and crowdfunding, companies and 
open-sourced projects have been established to collect microbiome 
samples from donors and provide them with a snapshot of their own 
microbiome profile in exchange for a monetary contribution.33 Some 
large projects include the American Gut in association with the Hu-
man Food Project and several universities, the Home Microbiome  
study with the Alfred P. Sloan Foundation and Argonne National 
 Laboratories, and the Project MERCCURI to analyze the space sta-
tion microbiome. Online resources, such as SciStarter and microBEnet, 
allow the identification of active studies where individuals can be in-
volved. The popularity and success of these types of projects is attrib-
uted to the need of the general public to access scientific information 
that can potentially impact their lives and health. This need of infor-
mation is strongly felt in the case of the gut microbiome, as changes in 
the gut microbiota have been associated with several debilitating human  
conditions.

The citizen science movement can empower the individuals but at the 
same time raises several ethical issues and imposes additional responsi-
bilities and concerns to the researchers involved in such projects.35,38–41 
The research community needs to be aware of the implicit expectations 
of the citizen scientists and making sure that data collection is not the 
only goal of the project. While moderating the high expectations of 
the citizen scientist, the researchers need to ensure the proper use of the 
collected data to help improve the health and knowledge of, for example, 
the human subjects.42 Properly used and integrated with other health 
status data, the generated microbiome profiles can potentially provide 
information very useful to both the human subjects and the research 
community. If  rigorous studies corroborate the observed associations 
between disease state and changes in microbiome structure, the infor-
mation could improve preventive health care and lead to earlier medical 
interventions.
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Although of immense benefit to the research community and to the 
participants, the modality of data collection by citizen scientist presents 
serious concerns with privacy and security of the data. Microbiome sam-
ples contain not only the individuals’ microbiome but also the genetic in-
formation that could potentially identify the sample donor. A successful 
microbiome citizen science project requires the implementation of the 
best practices for collection, management, security, analysis, and com-
munication of all the data collected.21–24 It is important to point out the  
well-known fact that research conducted using data collected from 
self- selected participants have methodological limitations. Because of 
 selection bias, information bias, and confounding effects, the findings of 
 research using self-selected participants requires cautious interpretation.40 
It requires the implementation of the proper analytical methodology to  
identify and possibly compensate for those biases and confounding ef-
fects.40 This type of collection efforts require the full awareness of the 
participants that the observed correlation or associations might lack ac-
curacy or generality because of those methodological limitations.

The use of self-selected participants can potentially restrict the health 
benefits of microbiome profiling to a small sector of the population, be-
cause the data collected is skewed based on socioeconomics, ethnicity, 
and/or disease state of the donor. Given the current funding situation, it 
can also limit the testing of alternate hypotheses.35–41 These data-gathering 
efforts will facilitate the collection of large number of samples and help 
the democratization of science by empowering the citizen scientist.

 METAGENOMICS, AGRICULTURE, AND FOOD MICROBIOLOGY

For living entities, proper nutrition is a key factor for survival. Agri-
culture and food microbiology can benefit from metagenomics advanc-
es by improving food safety and security, improving the detection of 
threats to food production and supply, and increasing the productivity 
of domestic animals and plants. In meat production, the ongoing use of  
direct-fed microbial could also be optimized in function of the food 
 intake and the animal of choice.

The World Health Organization estimates that worldwide, approxi-
mately 2.2 million annual deaths are associated with foodborne and 
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waterborne pathogens, including bacteria, viruses, and parasites.43 
Food and water safety is a worldwide necessity. The depth and high 
coverage of NGS makes metagenomics a powerful tool in the detection 
and surveillance of foodborne pathogens, the detection of outbreaks 
and transmission routes of foodborne diseases, the testing of foods and 
food-associated environments, and the identification of microbiota that 
may protect against foodborne illnesses.

Although the use of metagenomics approaches to test foods for the 
presence of specific foodborne pathogens can be problematic, its appli-
cation successfully identified the presence of serovars of Salmonella in 
samples that tested negative by bacteriological analytical manual meth-
ods and real-time polymerase chain reaction.43,44 In order to facilitate the 
use of metagenomics by governmental agencies and the food industry, 
it is crucial to develop bioinformatics tools tailored to the needs of the 
food microbiology laboratory and to put in place the appropriate legal 
and ethical framework for the collection and use of the data generated.  
The use of metagenomics approaches in the food industry, to better 
 understand, the food-associated microbial communities, can lead to 
 improvements in productivity, quality, and safety of food.43,45

Eliminating hunger worldwide, providing desirable food to a larger 
population, and producing the needed food in a sustainable way are 
major challenges facing future food security.46,47 A possible strategy for 
meeting those challenges in a sustainable way is to increase agricultural 
yields and production limits by manipulating above–belowground plant 
interactions with the goal of reducing pests and increasing crop growth. 
The association between plants and belowground soilborne microbiota 
increases plant fitness. Plant growth promoting rhizobacteria (PGPR) 
are able to influence plant growth and increase plant resistance to her-
bivores and pathogens.47–49 Metagenomics approaches to uncover the in-
teractions between plants and belowground microbiota in agricultural 
systems are essential to tailor and target these interactions for maximum 
benefit to the crops. More in-depth research in the composition and 
function of the rhizosphere microbiome is needed in order to better un-
derstand and identify the activity of PGPR bacteria in different crops. 
The knowledge obtained by the analyses of rhizosphere microbiome 
can be used to design PGPR-based interventions that promote plant 
growth, nutrition, and defense against pests in agricultural systems. The 
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inoculation of soils with beneficial bacteria such as PGPR could be a 
sustainable approach to increase productions of crops without the input 
of chemical fertilizers. Also, soil microbiota manipulation can be poten-
tially used to increase nitrogen fixation and reduce the use of fertilizers 
and subsequent nitrogenization resulting in economical and ecological 
benefits.50,51

 SUMMARY

In this overview, we have highlighted some of the promises and pros-
pects of the utilization of omics approaches to the study of microbiomes. 
Clearly, there is still much work ahead before achieving a comprehensive 
understanding of the complex dynamics and interactions within the hu-
man microbiome and other microbial ecosystems. At this time, microbi-
ome research is moving beyond the identification of genes and/or taxa 
and toward an emphasis on the application of multi-meta-omics tech-
nologies with the goal of sorting out the functions and pathways respon-
sible for the multidirectional interactions between the microbiota, the 
host, and the environment. A comprehensive understanding of these in-
teractions will contribute to the design of more effective, preventive, and 
therapeutic interventions. It creates opportunities for a new vision of 
health and disease treatment that was not imagined in the 20th century.

Many of  the resources and technologies required to fulfil the prom-
ise of  the microbiome are already available. The development of  novel 
bioinformatics frameworks and analytical techniques are essential in 
order to more efficiently mine and synthesize the information of  the 
so-called “Big Data” embedded in the present research or soon to be 
generated.

It is interesting to note the concept of scale involved. From the 
 interaction at the atomic scale of the enzyme and its substrate, driv-
ing, in part, the functional assembly of a microbiome, to the dynamic 
interactions of biomes, we have moved from the nanometer to the meter 
range and beyond. Let’s be ready to stretch our minds a little further and 
create the tools to better handle the rising concepts.

This methodological and conceptual revolution has provided the 
magnification lens needed to better understand the unseen world in 
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front of our eyes, the microbial communities inhabiting this planet for 
over 3.5 billion years. It is a scientific revolution that will soon reach 
every citizen.
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GLOSSARY

Brief Glossary of Terms Used in Metagenomics

These are concise definitions to help you understand some of the con-
cepts at play. Resources are available to deepen your understanding 
from environmental microbiology, medical microbiology, experimental 
design, taxonomy, study design, statistics, ecology, bioinformatics, etc.

Alpha diversity Expression of microbial diversity at one site taking into 
account the number of species and their abundance. A community will 
have a high alpha diversity when there is a high number of species in 
similar relative abundance.

Aliasing Phenomenon that renders time-varying signals indistinguishable 
when they are sampled below the oscillation frequencies of the signals.

Autocorrelation plot Method of analyzing time-varying dependen-
cies, in which the correlation of a time-series with successively lagged 
versions of itself  is plotted.

Automated experimental design Statistical technique in which an algo-
rithm is used to generate a design for future experiments, such as the 
time-points at which to sample subjects in a longitudinal study, based on 
certain information and objectives provided by the user.

Autoregressive model Statistical model in which the present value of a 
variable is expressed as a function of its past values.

Bayesian model Type of statistical model, in which uncertainty in 
knowledge about a system takes into account both observed data as well 
as prior information or beliefs.

Beta diversity Expression of the difference between sites. It takes into 
account the nestedness (maintenance of a subset of the population or 
the whole), and the turnover (species replacement), while being influ-
enced by species richness.

Binning Process of clustering sequences based on their nucleotide com-
position. This process can be enhanced using reference sequences.
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Biofilm Assemblage of microorganisms associated to themselves and/or 
to a substrate.

Chimera Artificial DNA sequence created during enzymatic amplifica-
tion and/or data processing.

Collector’s curve A plot of the cumulative number of species recorded 
as a function of the sampling effort and/or sequencing depth. It can then 
be extrapolated to estimate the species richness.

Contig Contiguous stretch of a DNA sequence comprised of a set of 
overlapping DNA segments (reads).

Clustering algorithm Computational method for separating data into 
cohesive groups according to some implicitly or explicitly specified 
metric.

Diploidy Existence of two complete genome copies in one cell.

Dirichlet process Type of stochastic process often used as a prior prob-
ability distribution in infinite mixture models.

Ecological statistics Set of statistical tools developed and validated for 
macroecology that can be applied to microbiome ecology.

Gene conversion Genetic phenomenon characterized by the nonrecipro-
cal genetic exchange between homologous sequences.

Hidden Markov model Type of state-space model that assumes a dis-
crete set of states with transitions between states occurring at discrete 
time-steps; states are assumed to be latent or hidden variables that are 
inferred from data.

Infinite mixture model Bayesian nonparametric clustering technique, 
in which observations are modeled as arising from a mixture with an 
infinite number of clusters or components.

Information theory Mathematical theory quantifying the amount of 
information in data, often involving the measure of entropy, which 
quantifies the degree of uncertainty involved in predicting the value of a 
random variable or outcome of an experiment.

k-mer A k-mer is a DNA (or amino acid) substring of length k. The 
occurrence of all possible substrings can be used as a k-mer frequency 



 Glossary 163

analysis to characterize and empirically compare genomic sequences. 
The optimal length k typically varies between 3 and 100 nucleotides 
based on the application.

Lowest common ancestor Taxonomic or phylogenetic strategy that iden-
tifies the root of the smallest subtree of the taxonomy or phylogeny that 
includes all the genomes of interest.

Machine learning Branch of artificial intelligence aimed at prediction 
based on patterns learned from a given input dataset, also called train-
ing dataset.

Mate pairs Read sequences known to be in 39 and 59 ends of a contig. 
The reads may or may not overlap.

Merooligoploidy Unequal genome dosage during cell division. When 
the cell division time becomes shorter than the time to replicate and seg-
regate the chromosome, bacteria start a new round of DNA replication 
before the previous round has been terminated; thus, the gene dosage of 
regions near the replication origin becomes higher than of regions near 
the terminus.

Metadata Collected information regarding the experimental param-
eters, as well as additional information enhancing the study at hand.

Metabolomics Study of small molecules from microbial community, 
tissue, or complex sample (metabolome).

Metagenomics Study of the genetic information coded by the DNA 
from microbial community, tissue, or complex sample (metagenome).

Metaproteomics Study of the proteins of a microbial community, tissue, 
or complex sample (proteome).

Metatranscriptomics Study of the genetic information coded by the 
RNA from microbial community, tissue, or complex sample (transcrip-
tome).

Microbiome The community composed of microorganisms in a defined 
habitat. Those organisms encompass bacteria, archaea, lower eukary-
otes, phages, and viruses.

Monoploidy The bacteria have a single genome copy per cell, located on 
a single or multiple genetic elements.
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Nonparametric model Type of statistical model in which the structure 
of the model is not fixed, and that typically grows in size to match the 
complexity of data.

Oligoploidy The bacteria have between 2 and 10 genome copies in one 
cell, located on a single or multiple genetic elements.

OTU Operational taxonomic unit is usually defined by 16S rDNA simi-
larities. The similarity percent chosen is often 97% for short reads and 
98.5% for full-length reads. It is used in place of taxonomic organization 
such as species, genus, and others. This information can later be overlaid.

Paired ends Sequence at both ends (59 and 39) of a segment of DNA 
during a sequencing process that reads from both extremities of the 
same DNA fragment.

Phylotype Observed similarity that classifies a group of organism to-
gether. It is rank neutral, thus it can be used for a family, genus, species, 
or strain based on similarities.

Polyploidy The bacteria have more than 10 genome copies per cell, 
located on a single or multiple genetic elements.

Q20 or Q30 See quality score.

Quality score, Q score, or Phred quality score It is a parameter used to 
inform about the base calling accuracy. It is a property that is logarith-
mically related to the base calling error probability. For example, a Q 
score of 20 (Q20) to a base is equivalent to the probability of an incor-
rect base call of 1 in 100 times (or 99% base accuracy). The higher the 
score is, the greater the accuracy.

Rarefaction curve It allows the estimation of the number of species in 
case of a reduced sampling effort, to facilitate the comparison between 
communities with unequal sampling efforts.

Regression model Statistical model in which the value of a dependent 
variable is expressed as a function of a set of independent variables 
(covariates).

Scaffold When paired reads are present in two different contigs, the two 
contigs can be linked to form a scaffold, which is a larger noncontiguous 
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DNA sequence. The gap size between the two contigs is estimated based 
on the insert size of the read pairs.

Sequence assembly Process of putting the DNA fragments (sequence 
reads) back together based on sequence similarity between reads to 
reconstruct the original sequence.

Sequencing coverage Mean number of times a nucleotide is sequenced 
in a genome (sequencing depth). Greater coverage will minimize errors 
due to sequencing or assembly.

Spline model Statistical model used for regression analyses, which is 
specified piecewise as a series of polynomial functions that are con-
strained to join together smoothly.

State-space model Statistical model that assumes the outputs or mea-
surements of a system depend on its state, which can change over time.

Taxonomic profiling Identification of the organisms present in a micro-
bial community and their relative abundances.

Whole-metagenome shotgun sequencing In the same way as whole-
genome shotgun sequencing refers to short-read sequencing of the 
complete genome of a single organism, whole-metagenome shotgun 
sequencing refers to short-read sequencing of the entire mixture of all 
organisms in a microbiome sample (whole-community sequencing).

Xenobiotic Foreign chemical substance encountered by an organism. 
This can include pharmaceutical drugs, dietary compounds, or pollut-
ants such as dioxins.

Now it’s time to have your feet dangling at the edge of leading science!
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